Given a 2D array arr[][], representing width of bricks of the same height present on a wall, the task is to find the minimum number of bricks that can be intersected by drawing a straight line from the top to the bottom of the wall.
Note: A line is said to intersect a brick if it passes through the brick and is non-intersecting if it is touching a brick’s boundary.
Examples:
Input: arr[][] = {{1, 2, 2, 1}, {3, 1, 2}, {1, 3, 2}, {2, 4}, {3, 1, 2}, {1, 3, 1, 1}}
Output: 2
Explanation: Considering the top left corner of the 2D array as the origin, the line is drawn at the coordinate x = 4 on the x-axis, such that it crosses the bricks on the 1st and 4th level, resulting in the minimum number of bricks crossed.Input: arr[][] = {{1, 1, 1}}
Output: 0
Explanation: The line can be drawn at x = 1 or x = 2 coordinate on the x-axis such that it does not cross any brick resulting in the minimum number of bricks crossed.
Naive Approach: The simplest approach is to consider straight lines that can be drawn on every possible coordinate on the x-axis, along the width of the wall, considering x = 0 at the top left corner of the wall. Then, calculate the number of bricks inserted in each case and print the minimum count obtained.
Time Complexity: O(N * M) where N is the total number of bricks and M is the total width of the wall
Auxiliary Space: O(1)
Approach: To optimize the above approach, the idea is to store the number of bricks ending at a certain width on the x-axis in a hashmap, and then find the line where the most number of bricks end. After getting this count, subtract it from the total height of the wall to get the minimum number of bricks crossed.
Follow the steps below to solve the problem:
- Initialize a hashmap, M to store the number of bricks ending at a certain width on the x-axis.
- Traverse the array, arr using the variable i to store row index
- Initialize a variable, width as 0 to store the ending position.
- Store the size of the current row in a variable X.
- Iterate in the range [0, X-2] using the variable j
- Increment the value of width by arr[i][j] and increment the value of width in M by 1.
- Also, keep track of the most number of bricks ending at a certain width and store it in a variable, res.
- Subtract the value of res from the overall height of the wall and store it in a variable, ans.
- Print the value of ans as the result.
Below is the implementation of the above approach:
C++
// C++ program for the above approach#include <bits/stdc++.h>using namespace std;// Function to find a line across a wall such// that it intersects minimum number of bricksvoid leastBricks(vector<vector<int> > wall){ // Declare a hashmap unordered_map<int, int> map; // Store the maximum number of // brick ending a point on x-axis int res = 0; // Iterate over all the rows for (vector<int> list : wall) { // Initialize width as 0 int width = 0; // Iterate over individual bricks for (int i = 0; i < list.size() - 1; i++) { // Add the width of the current // brick to the total width width += list[i]; // Increment number of bricks // ending at this width position map[width]++; // Update the variable, res res = max(res, map[width]); } } // Print the answer cout << wall.size() - res;}// Driver Codeint main(){ // Given Input vector<vector<int> > arr{ { 1, 2, 2, 1 }, { 3, 1, 2 }, { 1, 3, 2 }, { 2, 4 }, { 3, 1, 2 }, { 1, 3, 1, 1 } }; // Function Call leastBricks(arr); return 0;} |
Java
// Java program for the above approachimport java.util.ArrayList;import java.util.Arrays;import java.util.HashMap;public class GFG { // Function to find a line across a wall such // that it intersects minimum number of bricks static void leastBricks(ArrayList<ArrayList<Integer> > wall) { // Declare a hashmap HashMap<Integer, Integer> map = new HashMap<>(); // Store the maximum number of // brick ending a point on x-axis int res = 0; // Iterate over all the rows for (ArrayList<Integer> list : wall) { // Initialize width as 0 int width = 0; // Iterate over individual bricks for (int i = 0; i < list.size() - 1; i++) { // Add the width of the current // brick to the total width width += list.get(i); // Increment number of bricks // ending at this width position map.put(width, map.getOrDefault(width, 0) + 1); // Update the variable, res res = Math.max(res, map.getOrDefault(width, 0)); } } // Print the answer System.out.println(wall.size() - res); } // Driver code public static void main(String[] args) { // Given Input ArrayList<ArrayList<Integer> > arr = new ArrayList<>(); arr.add(new ArrayList<>(Arrays.asList(1, 2, 2, 1))); arr.add(new ArrayList<>(Arrays.asList(3, 1, 2))); arr.add(new ArrayList<>(Arrays.asList(1, 3, 2))); arr.add(new ArrayList<>(Arrays.asList(2, 4))); arr.add(new ArrayList<>(Arrays.asList(3, 1, 2))); arr.add(new ArrayList<>(Arrays.asList(1, 3, 1, 1))); // Function Call leastBricks(arr); }}// This code is contributed by abhinavjain194 |
Python3
# Python 3 program for the above approachfrom collections import defaultdict# Function to find a line across a wall such# that it intersects minimum number of bricksdef leastBricks(wall): # Declare a hashmap map = defaultdict(int) # Store the maximum number of # brick ending a point on x-axis res = 0 # Iterate over all the rows for list in wall: # Initialize width as 0 width = 0 # Iterate over individual bricks for i in range(len(list) - 1): # Add the width of the current # brick to the total width width += list[i] # Increment number of bricks # ending at this width position map[width] += 1 # Update the variable, res res = max(res, map[width]) # Print the answer print(len(wall) - res)# Driver Codeif __name__ == "__main__": # Given Input arr = [ [1, 2, 2, 1], [3, 1, 2], [1, 3, 2], [2, 4], [3, 1, 2], [1, 3, 1, 1] ] # Function Call leastBricks(arr) # This code is contributed by ukasp. |
C#
// C# program for the above approachusing System;using System.Collections.Generic;class GFG{ // Function to find a line across a wall such// that it intersects minimum number of bricksstatic void leastBricks(List<List<int>> wall){ // Declare a hashmap Dictionary<int, int> map = new Dictionary<int, int>(); // Store the maximum number of // brick ending a point on x-axis int res = 0; // Iterate over all the rows foreach (List<int> subList in wall) { // Initialize width as 0 int width = 0; for(int i = 0; i < subList.Count - 1; i++) { // Add the width of the current // brick to the total width width += subList[i]; // Increment number of bricks // ending at this width position if (map.ContainsKey(width)) map[width]++; else map.Add(width, 1); // Update the variable, res res = Math.Max(res, map[width]); } } // Print the answer Console.Write(wall.Count-res);}// Driver Codepublic static void Main(){ // Given Input List<List<int>> myList = new List<List<int>>(); myList.Add(new List<int>{ 1, 2, 2, 1 }); myList.Add(new List<int>{ 3, 1, 2 }); myList.Add(new List<int>{ 1, 3, 2 }); myList.Add(new List<int>{ 2, 4 }); myList.Add(new List<int>{ 3, 1, 2 }); myList.Add(new List<int>{ 1, 3, 1, 1 }); // Function Call leastBricks(myList);}}// This code is contributed by bgangwar59 |
Javascript
<script>// JavaScript program for the above approach// Function to find a line across a wall such// that it intersects minimum number of bricksfunction leastBricks(wall) { // Declare a hashmap let map = new Map(); // Store the maximum number of // brick ending a point on x-axis let res = 0; // Iterate over all the rows for (let list of wall) { // Initialize width as 0 let width = 0; // Iterate over individual bricks for (let i = 0; i < list.length - 1; i++) { // Add the width of the current // brick to the total width width += list[i]; // Increment number of bricks // ending at this width position if (map.has(width)) { map.set(width, map.get(width) + 1); } else { map.set(width, 1) } // Update the variable, res res = Math.max(res, map.get(width)); } } // Print the answer document.write(wall.length - res);}// Driver Code// Given Inputlet arr = [ [1, 2, 2, 1], [3, 1, 2], [1, 3, 2], [2, 4], [3, 1, 2], [1, 3, 1, 1]];// Function CallleastBricks(arr);</script> |
2
Time Complexity: O(N) where N is the total number of bricks on the wall
Auxiliary Space: O(M) where M is the total width of the wall
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

