Given a permutation P of size N, having values from 1 to N. the task is to find the minimum number of adjacent swaps required such that for all i in the range [1, N], P[i] does not equal i.
Examples:
Input: P = [1, 4, 3, 5, 2]
Output: 2
Explanation:
Here P = [1, 4, 3, 5, 2] at index 1, 2, 3, 4, 5. As we can see, P[1] = 1 and P[3] = 3. Hence, we need to get rid of this invariant.
Swap 1: Swap index 1 and index 2 => [4, 1, 3, 5, 2]
Swap 2: Swap index 2 and index 3 => [4, 3, 1, 5, 2]
The final array has no i where P[i] = i. Hence, a minimum of 2 swaps is required.
Input: P = [1, 2, 4, 9, 5, 8, 7, 3, 6]
Output: 3
Explanation:
Swap 1: Swap index 1 and index 2 => [2, 1, 4, 9, 5, 8, 7, 3, 6]
Swap 2: Swap index 5 and index 6 => [2, 1, 4, 9, 8, 5, 7, 3, 6]
Swap 2: Swap index 7 and index 8 => [2, 1, 4, 9, 8, 5, 3, 7, 6]
Hence, a minimum of 3 swaps is required.
Approach: Let us consider the positions where P[i] = i be denoted by X and the other positions by O. Below are three basic observation for the question:
- If values at any two adjacent index of the permutation is of the form XO, we can simply swap the 2 indexes to get ‘OO’.
- If values at any two adjacent index of the permutation is of the form XX, we can simply swap the 2 indexes to get ‘OO’.
- If values at any two adjacent index of the permutation is of the form OX, it is simply ‘XO’ or ‘XX’ once the pointer reaches index at X.
Below are the steps:
- Iterate from 1 to N – 1 and check if P[i] = i then we simply swap(P[i], P[i + 1]), otherwise continue the process for the next adjacent pairs.
- The Corner Case for the given question is when i = N, if P[i] = i, then we swap(P[i], P[i – 1]).
Below is the implementation of above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the minimum // number of swaps void solve(vector< int >& P, int n) { // New array to convert // to 1-based indexing vector< int > arr; arr.push_back(0); for ( auto x : P) arr.push_back(x); // Keeps count of swaps int cnt = 0; for ( int i = 1; i < n; i++) { // Check if it is an 'X' position if (arr[i] == i) { swap(arr[i], arr[i + 1]); cnt++; } } // Corner Case if (arr[n] == n) { swap(arr[n - 1], arr[n]); cnt++; } // Print the minimum swaps cout << cnt << endl; } // Driver Code signed main() { // Given Number N int N = 9; // Given Permutation of N numbers vector< int > P = { 1, 2, 4, 9, 5, 8, 7, 3, 6 }; // Function Call solve(P, N); return 0; } |
Java
// Java program for the above approach import java.io.*; class GFG{ // Function to find the minimum // number of swaps static void solve( int P[], int n) { // New array to convert // to 1-based indexing int arr[] = new int [n + 1 ]; arr[ 0 ] = 0 ; for ( int i = 0 ; i < n; i++) arr[i + 1 ] = P[i]; // Keeps count of swaps int cnt = 0 ; for ( int i = 1 ; i < n; i++) { // Check if it is an 'X' position if (arr[i] == i) { int t = arr[i + 1 ]; arr[i + 1 ] = arr[i]; arr[i] = t; cnt++; } } // Corner Case if (arr[n] == n) { // Swap int t = arr[n - 1 ]; arr[n - 1 ] = arr[n]; arr[n] = t; cnt++; } // Print the minimum swaps System.out.println(cnt); } // Driver code public static void main(String[] args) { // Given Number N int N = 9 ; // Given Permutation of N numbers int P[] = new int []{ 1 , 2 , 4 , 9 , 5 , 8 , 7 , 3 , 6 }; // Function Call solve(P, N); } } // This code is contributed by Pratima Pandey |
Python3
# Python3 program for the above approach # Function to find the minimum # number of swaps def solve(P, n): # New array to convert # to 1-based indexing arr = [] arr.append( 0 ) for x in P: arr.append(x) # Keeps count of swaps cnt = 0 for i in range ( 1 , n): # Check if it is an 'X' position if (arr[i] = = i): arr[i], arr[i + 1 ] = arr[i + 1 ], arr[i] cnt + = 1 # Corner Case if (arr[n] = = n): arr[n - 1 ], arr[n] = arr[n] , arr[n - 1 ] cnt + = 1 # Print the minimum swaps print (cnt) # Driver Code # Given number N N = 9 # Given permutation of N numbers P = [ 1 , 2 , 4 , 9 , 5 , 8 , 7 , 3 , 6 ] # Function call solve(P, N) # This code is contributed by chitranayal |
C#
// C# program for the above approach using System; class GFG{ // Function to find the minimum // number of swaps static void solve( int []P, int n) { // New array to convert // to 1-based indexing int []arr = new int [n + 1]; arr[0] = 0; for ( int i = 0; i < n; i++) arr[i + 1] = P[i]; // Keeps count of swaps int cnt = 0; for ( int i = 1; i < n; i++) { // Check if it is an 'X' position if (arr[i] == i) { int t = arr[i + 1]; arr[i + 1] = arr[i]; arr[i] = t; cnt++; } } // Corner Case if (arr[n] == n) { // Swap int t = arr[n - 1]; arr[n - 1] = arr[n]; arr[n] = t; cnt++; } // Print the minimum swaps Console.WriteLine(cnt); } // Driver code public static void Main(String[] args) { // Given Number N int N = 9; // Given Permutation of N numbers int []P = { 1, 2, 4, 9, 5, 8, 7, 3, 6 }; // Function Call solve(P, N); } } // This code is contributed by Princi Singh |
Javascript
<script> // JavaScript program for the above approach // Function to find the minimum // number of swaps function solve(P, n) { // New array to convert // to 1-based indexing let arr = Array.from({length: n+1}, (_, i) => 0); arr[0] = 0; for (let i = 0; i < n; i++) arr[i + 1] = P[i]; // Keeps count of swaps let cnt = 0; for (let i = 1; i < n; i++) { // Check if it is an 'X' position if (arr[i] == i) { let t = arr[i + 1]; arr[i + 1] = arr[i]; arr[i] = t; cnt++; } } // Corner Case if (arr[n] == n) { // Swap let t = arr[n - 1]; arr[n - 1] = arr[n]; arr[n] = t; cnt++; } // Print the minimum swaps document.write(cnt); } // Driver Code // Given Number N let N = 9; // Given Permutation of N numbers let P = [ 1, 2, 4, 9, 5, 8, 7, 3, 6 ]; // Function Call solve(P, N); </script> |
3
Time Complexity: O(N)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!