Given a positive integer N, the task is to find the minimum N-digit number such that performing the following operations on it in the following order results into the largest N-digit number:
- Convert the number to its Binary Coded Decimal form.
- Concatenate all the resulting nibbles to form a binary number.
- Remove the least significant N bits from the number.
- Convert this obtained binary number to its decimal form.
Examples:
Input: N = 4
Output: 9990
Explanation:Â
Largest 4 digit number = 9999Â
BCD of 9999 = 1001 1001 1001 1001Â
Binary form = 1001100110011001Â
Replacing last 4 bits by 0000: 1001 1001 1001 0000 = 9990Â
Therefore, the minimum N-digit number that can generate 9999 is 9990Input: N = 5
Output: 99980
Explanation:Â
Largest 5 digit number = 99999Â
BCD of 99999 = 1001 1001 1001 1001 1001Â
Binary for = 10011001100110011001Â
Replacing last 5 bits by 00000: 10011001100110000000 = 99980Â
Therefore, the minimum N-digit number that can generate 99999 is 99980
Approach: The problem can be solved based on the following observations of BCD numbers. Follow the steps below to solve the problem:Â
Â
- Each nibble in BCD does not increase beyond 1001 which is 9 in binary form, since the maximum single digit decimal number is 9.
- Thus, it can be concluded that the maximum binary number that can be obtained by bringing N nibbles together is 1001 concatenated N times, whose decimal representation is have to be the digit 9 concatenated N times.
- The last N LSBs from this binary form is required to be removed. Thus the values of these bits will not contribute in making the result larger. Therefore, keeping the last N bits as 9 is not necessary as we need the minimum number producing the maximum result.
- The value of floor(N/4) will give us the number of nibbles that will be completely removed from the number. Assign these nibbles the value of 0000 to minimize the number.
- The remainder of N/4 gives us the number of digits that would be switched to 0 from the LSB of the last non-zero nibble after having performed the previous step.
- This BCD formed by performing the above steps, when converted to decimal, generates the required maximized N digit number.
Below is the implementation of the above approach:
C++
// C++ Program to implement// the above approach#include <bits/stdc++.h>using namespace std;Â
void maximizedNdigit(int n){Â
    int count0s, count9s;    // If n is divisible by 4    if (n % 4 == 0) {Â
        count0s = n / 4;        count9s = n - n / 4;    }Â
    // Otherwise    else {Â
        count0s = n / 4 + 1;        count9s = n - count0s;        count0s--;    }Â
    while (count9s--)        cout << '9';Â
    if (n % 4 != 0)        cout << '8';Â
    while (count0s--)        cout << '0';    cout << endl;}Â
// Driver Codeint main(){Â Â Â Â int n = 5;Â Â Â Â maximizedNdigit(n);} |
C
#include <stdio.h>Â
void maximizedNdigit(int n){Â
  int count0s, count9s;  // If n is divisible by 4  if (n % 4 == 0) {Â
    count0s = n / 4;    count9s = n - n / 4;  }Â
  // Otherwise  else {Â
    count0s = n / 4 + 1;    count9s = n - count0s;    count0s--;  }Â
  while (count9s--)    printf("9");Â
  if (n % 4 != 0)    printf("8");Â
  while (count0s--)    printf("0");  printf("\n");}Â
// Driver Codeint main(){Â Â int n = 5;Â Â maximizedNdigit(n);Â Â return 0;}Â
// This code is contributed by phalashi. |
Java
// Java program to implement// the above approachimport java.io.*;Â
class GFG{Â
static void maximizedNdigit(int n) { Â Â Â Â int count0s, count9s; Â Â Â Â Â Â Â Â Â // If n is divisible by 4 Â Â Â Â if (n % 4 == 0)Â Â Â Â { Â Â Â Â Â Â Â Â count0s = n / 4; Â Â Â Â Â Â Â Â count9s = n - n / 4; Â Â Â Â } Â
    // Otherwise     else    {         count0s = n / 4 + 1;         count9s = n - count0s;         count0s--;     } Â
    while (count9s != 0)    {        count9s--;        System.out.print('9');     }Â
    if (n % 4 != 0)         System.out.print('8'); Â
    while (count0s != 0)     {        count0s--;        System.out.print('0');    }         System.out.println(); } Â
// Driver Code public static void main(String[] args){ Â Â Â Â int n = 5; Â Â Â Â Â Â Â Â Â maximizedNdigit(n); } }Â
// This code is contributed by sanjoy_62 |
Python3
# Python3 program to implement# the above approachdef maximizedNdigit(n):Â
    # If n is divisible by 4    if (n % 4 == 0):        count0s = n // 4        count9s = n - n // 4         # Otherwise    else:        count0s = n // 4 + 1        count9s = n - count0s        count0s -= 1         while (count9s):        print('9', end = "")        count9s -= 1Â
    if (n % 4 != 0):        print('8', end = "")Â
    while (count0s):        print('0', end = "")        count0s -= 1             print()Â
# Driver Codeif __name__ == "__main__":Â
    n = 5    maximizedNdigit(n)Â
# This code is contributed by chitranayal |
C#
// C# program to implement // the above approach using System;Â
class GFG{Â
static void maximizedNdigit(int n) { Â Â Â Â int count0s, count9s; Â Â Â Â Â Â Â Â Â // If n is divisible by 4 Â Â Â Â if (n % 4 == 0)Â Â Â Â { Â Â Â Â Â Â Â Â count0s = n / 4; Â Â Â Â Â Â Â Â count9s = n - n / 4; Â Â Â Â } Â
    // Otherwise     else    {         count0s = n / 4 + 1;         count9s = n - count0s;         count0s--;     } Â
    while (count9s != 0)    {        count9s--;        Console.Write('9');     }Â
    if (n % 4 != 0)         Console.Write('8'); Â
    while (count0s != 0)     {        count0s--;        Console.Write('0');    }             Console.WriteLine(); } Â
// Driver Code public static void Main(){ Â Â Â Â int n = 5; Â Â Â Â Â Â Â Â Â maximizedNdigit(n); } }Â
// This code is contributed by sanjoy_62 |
Javascript
<script>Â
// JavaScript Program to implement// the above approachÂ
function maximizedNdigit(n){Â
    let count0s, count9s;    // If n is divisible by 4    if (n % 4 == 0) {Â
        count0s = Math.floor(n / 4);        count9s = n - Math.floor(n / 4);    }Â
    // Otherwise    else {Â
        count0s = Math.floor(n / 4) + 1;        count9s = n - count0s;        count0s--;    }Â
    while (count9s--)        document.write('9');Â
    if (n % 4 != 0)        document.write('8');Â
    while (count0s--)        document.write('0');    document.write("<br>");}Â
// Driver CodeÂ
    let n = 5;    maximizedNdigit(n);Â
Â
// This code is contributed by Surbhi Tyagi.Â
</script> |
99980
Â
Time Complexity: O(N)Â
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!
