Saturday, September 6, 2025
HomeData Modelling & AIMinimum length of the sub-string whose characters can be used to form...

Minimum length of the sub-string whose characters can be used to form a palindrome of length K

Given a string str consisting of lowercase English letters and an integer K. The task is to find the minimum length of the sub-string whose characters can be used to form a palindrome of length K. If no such sub-string exists then print -1.
Examples: 
 

Input: str = “abcda”, k = 2 
Output:
In order to form a palindrome of length 2, both the occurrences of ‘a’ are required. 
Hence, the length of the required sub-string will be 5.
Input: str = “abcde”, k = 5 
Output: -1 
No palindromic string of length 5 can be formed from the characters of the given string. 
 

 

Approach: The idea is to use Binary Search. Minimum character needed to form a palindrome of length K is K. So, our search domain gets reduced to [K, length(str)]. Apply binary search in this range and find a sub-string of length X (K ? X ? length(S)) such that using some or all characters of this sub-string a palindromic string of size K can be formed. Minimum X which satisfies the given condition will be the required answer. If no  such sub-string is possible then print -1.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns true if
// a palindrome can be formed using
// exactly k characters
bool isPalindrome(int freq[], int k)
{
    // Variable to check if characters
    // with odd frequency are present
    int flag = 0;
 
    // Variable to store maximum length
    // of the palindrome that can be formed
    int length = 0;
 
    for (int i = 0; i < 26; i++) {
        if (freq[i] == 0)
            continue;
 
        else if (freq[i] == 1)
            flag = 1;
 
        else {
            if (freq[i] & 1)
                flag = 1;
            length += freq[i] / 2;
        }
    }
 
    // If k is odd
    if (k & 1) {
        if (2 * length + flag >= k)
            return true;
    }
 
    // If k is even
    else {
        if (2 * length >= k)
            return true;
    }
 
    // If palindrome of length
    // k cant be formed
    return false;
}
 
// Function that returns true if a palindrome
// of length k can be formed from a
// sub-string of length m
bool check(string str, int m, int k)
{
    // Stores frequency of characters
    // of a substring of length m
    int freq[26] = { 0 };
 
    for (int i = 0; i < m; i++)
        freq[str[i] - 'a']++;
 
    // If a palindrome can be
    // formed from a substring of
    // length m
    if (isPalindrome(freq, k))
        return true;
 
    // Check for all the substrings of
    // length m, if a palindrome of
    // length k can be formed
    for (int i = m; i < str.length(); i++) {
        freq[str[i - m] - 'a']--;
        freq[str[i] - 'a']++;
 
        if (isPalindrome(freq, k))
            return true;
    }
 
    // If no palindrome of length
    // k can be formed
    return false;
}
 
// Function to return the minimum length
// of the sub-string whose characters can be
// used to form a palindrome of length k
int find(string str, int n, int k)
{
    int l = k;
    int h = n;
 
    // To store the minimum length of the
    // sub-string that can be used to form
    // a palindrome of length k
    int ans = -1;
 
    while (l <= h) {
        int m = (l + h) / 2;
        if (check(str, m, k)) {
            ans = m;
            h = m - 1;
        }
        else
            l = m + 1;
    }
 
    return ans;
}
 
// Driver code
int main()
{
    string str = "abcda";
    int n = str.length();
    int k = 2;
    cout << find(str, n, k);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Function that returns true if
// a palindrome can be formed using
// exactly k characters
static boolean isPalindrome(int freq[], int k)
{
    // Variable to check if characters
    // with odd frequency are present
    int flag = 0;
 
    // Variable to store maximum length
    // of the palindrome that can be formed
    int length = 0;
 
    for (int i = 0; i < 26; i++)
    {
        if (freq[i] == 0)
            continue;
 
        else if (freq[i] == 1)
            flag = 1;
 
        else
        {
            if (freq[i] % 2 == 1)
                flag = 1;
            length += freq[i] / 2;
        }
    }
 
    // If k is odd
    if (k % 2 == 1)
    {
        if (2 * length + flag >= k)
            return true;
    }
 
    // If k is even
    else
    {
        if (2 * length >= k)
            return true;
    }
 
    // If palindrome of length
    // k cant be formed
    return false;
}
 
// Function that returns true if a palindrome
// of length k can be formed from a
// sub-string of length m
static boolean check(String str, int m, int k)
{
    // Stores frequency of characters
    // of a substring of length m
    int []freq = new int[26];
 
    for (int i = 0; i < m; i++)
        freq[str.charAt(i) - 'a']++;
 
    // If a palindrome can be
    // formed from a substring of
    // length m
    if (isPalindrome(freq, k))
        return true;
 
    // Check for all the substrings of
    // length m, if a palindrome of
    // length k can be formed
    for (int i = m; i < str.length(); i++)
    {
        freq[str.charAt(i-m) - 'a']--;
        freq[str.charAt(i) - 'a']++;
 
        if (isPalindrome(freq, k))
            return true;
    }
 
    // If no palindrome of length
    // k can be formed
    return false;
}
 
// Function to return the minimum length
// of the sub-string whose characters can be
// used to form a palindrome of length k
static int find(String str, int n, int k)
{
    int l = k;
    int h = n;
 
    // To store the minimum length of the
    // sub-string that can be used to form
    // a palindrome of length k
    int ans = -1;
 
    while (l <= h)
    {
        int m = (l + h) / 2;
        if (check(str, m, k))
        {
            ans = m;
            h = m - 1;
        }
        else
            l = m + 1;
    }
 
    return ans;
}
 
// Driver code
public static void main(String[] args)
{
    String str = "abcda";
    int n = str.length();
    int k = 2;
    System.out.println(find(str, n, k));
    }
}
 
// This code is contributed by Rajput-Ji


Python3




# Python 3 implementation of the approach
 
# Function that returns true if
# a palindrome can be formed using
# exactly k characters
def isPalindrome(freq, k):
     
    # Variable to check if characters
    # with odd frequency are present
    flag = 0
 
    # Variable to store maximum length
    # of the palindrome that can be formed
    length = 0
 
    for i in range(26):
        if (freq[i] == 0):
            continue
 
        elif (freq[i] == 1):
            flag = 1
 
        else:
            if (freq[i] & 1):
                flag = 1
            length += freq[i] // 2
 
    # If k is odd
    if (k & 1):
        if (2 * length + flag >= k):
            return True
 
    # If k is even
    else:
        if (2 * length >= k):
            return True
 
    # If palindrome of length
    # k cant be formed
    return False
 
# Function that returns true if a palindrome
# of length k can be formed from a
# sub-string of length m
def check(str, m, k):
     
    # Stores frequency of characters
    # of a substring of length m
    freq = [0 for i in range(26)]
 
    for i in range(m):
        freq[ord(str[i]) - ord('a')] += 1
 
    # If a palindrome can be
    # formed from a substring of
    # length m
    if (isPalindrome(freq, k)):
        return True
 
    # Check for all the substrings of
    # length m, if a palindrome of
    # length k can be formed
    for i in range(m, len(str), 1):
        freq[ord(str[i - m]) - ord('a')] -= 1
        freq[ord(str[i]) - ord('a')] += 1
 
        if (isPalindrome(freq, k)):
            return True
 
    # If no palindrome of length
    # k can be formed
    return False
 
# Function to return the minimum length
# of the sub-string whose characters can be
# used to form a palindrome of length k
def find(str, n, k):
    l = k
    h = n
 
    # To store the minimum length of the
    # sub-string that can be used to form
    # a palindrome of length k
    ans = -1
 
    while (l <= h):
        m = (l + h) // 2
        if (check(str, m, k)):
            ans = m
            h = m - 1
         
        else:
            l = m + 1
 
    return ans
 
# Driver code
if __name__ == '__main__':
    str = "abcda"
    n = len(str)
    k = 2
    print(find(str, n, k))
 
# This code is contributed by
# Surendra_Gangwar


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function that returns true if
// a palindrome can be formed using
// exactly k characters
static Boolean isPalindrome(int []freq, int k)
{
    // Variable to check if characters
    // with odd frequency are present
    int flag = 0;
 
    // Variable to store maximum length
    // of the palindrome that can be formed
    int length = 0;
 
    for (int i = 0; i < 26; i++)
    {
        if (freq[i] == 0)
            continue;
 
        else if (freq[i] == 1)
            flag = 1;
 
        else
        {
            if (freq[i] % 2 == 1)
                flag = 1;
            length += freq[i] / 2;
        }
    }
 
    // If k is odd
    if (k % 2 == 1)
    {
        if (2 * length + flag >= k)
            return true;
    }
 
    // If k is even
    else
    {
        if (2 * length >= k)
            return true;
    }
 
    // If palindrome of length
    // k cant be formed
    return false;
}
 
// Function that returns true if a palindrome
// of length k can be formed from a
// sub-string of length m
static Boolean check(String str, int m, int k)
{
    // Stores frequency of characters
    // of a substring of length m
    int []freq = new int[26];
 
    for (int i = 0; i < m; i++)
        freq[str[i] - 'a']++;
 
    // If a palindrome can be
    // formed from a substring of
    // length m
    if (isPalindrome(freq, k))
        return true;
 
    // Check for all the substrings of
    // length m, if a palindrome of
    // length k can be formed
    for (int i = m; i < str.Length; i++)
    {
        freq[str[i - m] - 'a']--;
        freq[str[i] - 'a']++;
 
        if (isPalindrome(freq, k))
            return true;
    }
 
    // If no palindrome of length
    // k can be formed
    return false;
}
 
// Function to return the minimum length
// of the sub-string whose characters can be
// used to form a palindrome of length k
static int find(String str, int n, int k)
{
    int l = k;
    int h = n;
 
    // To store the minimum length of the
    // sub-string that can be used to form
    // a palindrome of length k
    int ans = -1;
 
    while (l <= h)
    {
        int m = (l + h) / 2;
        if (check(str, m, k))
        {
            ans = m;
            h = m - 1;
        }
        else
            l = m + 1;
    }
 
    return ans;
}
 
// Driver code
public static void Main(String[] args)
{
    String str = "abcda";
    int n = str.Length;
    int k = 2;
    Console.WriteLine(find(str, n, k));
}
}
 
// This code is contributed by PrinciRaj1992


PHP




<?php
// PHP implementation of the approach
 
// Function that returns true if
// a palindrome can be formed using
// exactly k characters
function isPalindrome($freq, $k)
{
    // Variable to check if characters
    // with odd frequency are present
    $flag = 0;
 
    // Variable to store maximum length
    // of the palindrome that can be formed
    $length = 0;
 
    for ($i = 0; $i < 26; $i++)
    {
        if ($freq[$i] == 0)
            continue;
 
        else if ($freq[$i] == 1)
            $flag = 1;
 
        else
        {
            if ($freq[$i] & 1)
                $flag = 1;
                 
            $length += floor($freq[$i] / 2);
        }
    }
 
    // If k is odd
    if ($k & 1)
    {
        if (2 * $length + $flag >= $k)
            return true;
    }
 
    // If k is even
    else
    {
        if (2 * $length >= $k)
            return true;
    }
 
    // If palindrome of length
    // k cant be formed
    return false;
}
 
// Function that returns true if a palindrome
// of length k can be formed from a
// sub-string of length m
function check($str, $m, $k)
{
    // Stores frequency of characters
    // of a substring of length m
    $freq = array_fill(0, 26, 0);
 
    for ($i = 0; $i < $m; $i++)
        $freq[ord($str[$i]) - ord('a')]++;
 
    // If a palindrome can be
    // formed from a substring of
    // length m
    if (isPalindrome($freq, $k))
        return true;
 
    // Check for all the substrings of
    // length m, if a palindrome of
    // length k can be formed
    for ($i = $m; $i < strlen($str); $i++)
    {
        $freq[ord($str[$i - $m]) - ord('a')] -= 1;
        $freq[ord($str[$i]) - ord('a')] += 1;
 
        if (isPalindrome($freq, $k))
            return true;
    }
 
    // If no palindrome of length
    // k can be formed
    return false;
}
 
// Function to return the minimum length
// of the sub-string whose characters can be
// used to form a palindrome of length k
function find($str, $n, $k)
{
    $l = $k;
    $h = $n;
 
    // To store the minimum length of the
    // sub-string that can be used to form
    // a palindrome of length k
    $ans = -1;
 
    while ($l <= $h)
    {
        $m = floor(($l + $h) / 2);
        if (check($str, $m, $k))
        {
            $ans = $m;
            $h = $m - 1;
        }
        else
            $l = $m + 1;
    }
 
    return $ans;
}
 
// Driver code
$str = "abcda";
$n = strlen($str);
$k = 2;
 
echo find($str, $n, $k);
 
// This code is improved by Ryuga
?>


Javascript




<script>
    // Javascript implementation of the approach
     
    // Function that returns true if
    // a palindrome can be formed using
    // exactly k characters
    function isPalindrome(freq, k)
    {
     
        // Variable to check if characters
        // with odd frequency are present
        let flag = 0;
 
        // Variable to store maximum length
        // of the palindrome that can be formed
        let length = 0;
 
        for (let i = 0; i < 26; i++)
        {
            if (freq[i] == 0)
                continue;
 
            else if (freq[i] == 1)
                flag = 1;
 
            else
            {
                if (freq[i] % 2 == 1)
                    flag = 1;
                length += parseInt(freq[i] / 2, 10);
            }
        }
 
        // If k is odd
        if (k % 2 == 1)
        {
            if (2 * length + flag >= k)
                return true;
        }
 
        // If k is even
        else
        {
            if (2 * length >= k)
                return true;
        }
 
        // If palindrome of length
        // k cant be formed
        return false;
    }
 
    // Function that returns true if a palindrome
    // of length k can be formed from a
    // sub-string of length m
    function check(str, m, k)
    {
        // Stores frequency of characters
        // of a substring of length m
        let freq = new Array(26);
        freq.fill(0);
 
        for (let i = 0; i < m; i++)
            freq[str[i].charCodeAt() - 'a'.charCodeAt()]++;
 
        // If a palindrome can be
        // formed from a substring of
        // length m
        if (isPalindrome(freq, k))
            return true;
 
        // Check for all the substrings of
        // length m, if a palindrome of
        // length k can be formed
        for (let i = m; i < str.length; i++)
        {
            freq[str[i - m].charCodeAt() - 'a'.charCodeAt()]--;
            freq[str[i].charCodeAt() - 'a'.charCodeAt()]++;
 
            if (isPalindrome(freq, k))
                return true;
        }
 
        // If no palindrome of length
        // k can be formed
        return false;
    }
 
    // Function to return the minimum length
    // of the sub-string whose characters can be
    // used to form a palindrome of length k
    function find(str, n, k)
    {
        let l = k;
        let h = n;
 
        // To store the minimum length of the
        // sub-string that can be used to form
        // a palindrome of length k
        let ans = -1;
 
        while (l <= h)
        {
            let m = parseInt((l + h) / 2, 10);
            if (check(str, m, k))
            {
                ans = m;
                h = m - 1;
            }
            else
                l = m + 1;
        }
        return ans;
    }
     
    let str = "abcda";
    let n = str.length;
    let k = 2;
    document.write(find(str, n, k));
     
    // This code is contributed by divyeshrbadiya07.
</script>


Output: 

5

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32270 POSTS0 COMMENTS
Milvus
82 POSTS0 COMMENTS
Nango Kala
6639 POSTS0 COMMENTS
Nicole Veronica
11805 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11869 POSTS0 COMMENTS
Shaida Kate Naidoo
6754 POSTS0 COMMENTS
Ted Musemwa
7029 POSTS0 COMMENTS
Thapelo Manthata
6705 POSTS0 COMMENTS
Umr Jansen
6721 POSTS0 COMMENTS