Given a string S of length N, consisting of lowercase English alphabets only, the task is to find the minimum possible length of run-length-encoding that can be generated by removing at most K characters from the string S.
Examples:
Input: S = “abbbcdcdd”, N = 9, K = 2
Output: 5
Explanation: One possible way is to delete both occurrences of ‘c’ from S.
The new string generated is “abbbddd” whose run-length-encoding is “ab3d3”.
Therefore, the length of the encoded string is 5.Input: S = “aabbca”, N = 6, K = 3
Output: 2
Explanation: One possible way is to delete both the occurrences of ‘b’ and one occurrence of ‘c’.
The new string generated is “aaa” whose run-length-encoding is “a3”.
Therefore, the length of the encoded string is 2
Naive Approach: The simplest approach to solve the problem is to remove every combination of K characters from the string and calculate their respective run-length-encoding. Finally, print the length of the smallest run-length-encoding obtained.
Time Complexity: O(K * N!(N – K)! * K!)
Auxiliary Space: O(K)
Efficient Approach: To optimize the above approach, follow the steps below to solve the problem:
- Maintain an auxiliary array dp[n][k][26][n], where dp[idx][K][last][count] denotes the minimum run-length-encoding obtained starting from index idx where, K denotes the number of deletions remaining, last denotes the last character with frequency count so far.
- For every character, two possibilities exists, either to delete the character or to retain it.
- Consider that the current character at index idx is deleted and calculate recursively the minimum run-length encoding obtained by passing the parameters (idx + 1, K – 1, last, count)
- Now, consider that the current character at index idx is retained and calculate recursively the minimum run-length encoding for the following two cases:
- If S[idx] = last: Calculate minimum run-length encoding by passing the parameters (idx + 1, K, S[idx], count + 1).
- Otherwise, calculate minimum run-length encoding by passing the parameters (idx + 1, K, S[idx], 1).
- Return the minimum of the above-computed values and repeat the above steps for all indices of the string.
Below is the implementation of the above approach:
C++
// C++ Program to implement// the above approach#include <bits/stdc++.h>using namespace std;#define maxN 20int dp[maxN][maxN][27][maxN];// Function which solves the desired problemint solve(string& s, int n, int idx, int k, char last = 123, int count = 0){ // idx: current index in s // k: Remaining number of deletions // last: Previous character // count: Number of occurrences // of the previous character // Base Case if (k < 0) return n + 1; // If the entire string has // been traversed if (idx == n) return 0; int& ans = dp[idx][k][last - 'a'][count]; // If precomputed subproblem // occurred if (ans != -1) return ans; ans = n + 1; // Minimum run length encoding by // removing the current character ans = min(ans, solve(s, n, idx + 1, k - 1, last, count)); // Minimum run length encoding by // retaining the current character int inc = 0; if (count == 1 || count == 9 || count == 99) inc = 1; // If the current and the // previous characters match if (last == s[idx]) { ans = min(ans, inc + solve(s, n, idx + 1, k, s[idx], count + 1)); } // Otherwise else { ans = min(ans, 1 + solve(s, n, idx + 1, k, s[idx], 1)); } return ans;}// Function to return minimum run-length encoding// for string s by removing atmost k charactersint MinRunLengthEncoding(string& s, int n, int k){ memset(dp, -1, sizeof(dp)); return solve(s, n, 0, k);}// Driver Codeint main(){ string S = "abbbcdcdd"; int N = 9, K = 2; cout << MinRunLengthEncoding(S, N, K); return 0;} |
Java
// Java program to implement // the above approach import java.util.*;class GFG{static int maxN = 20;static int dp[][][][] = new int[maxN][maxN][27][maxN];// Function which solves the desired problempublic static int solve(String s, int n, int idx, int k, char last, int count){ // idx: current index in s // k: Remaining number of deletions // last: Previous character // count: Number of occurrences // of the previous character // Base Case if (k < 0) return n + 1; // If the entire string has // been traversed if (idx == n) return 0; int ans = dp[idx][k][last - 'a'][count]; // If precomputed subproblem // occurred if (ans != -1) return ans; ans = n + 1; // Minimum run length encoding by // removing the current character ans = Math.min(ans, solve(s, n, idx + 1, k - 1, last, count)); // Minimum run length encoding by // retaining the current character int inc = 0; if (count == 1 || count == 9 || count == 99) inc = 1; // If the current and the // previous characters match if (last == s.charAt(idx)) { ans = Math.min(ans, inc + solve(s, n, idx + 1, k, s.charAt(idx), count + 1)); } // Otherwise else { ans = Math.min(ans, 1 + solve(s, n, idx + 1, k, s.charAt(idx), 1)); } return dp[idx][k][last - 'a'][count] = ans;}// Function to return minimum run-length encoding// for string s by removing atmost k characterspublic static int MinRunLengthEncoding(String s, int n, int k){ for(int i[][][] : dp) for(int j[][] : i) for(int p[] : j) Arrays.fill(p, -1); return solve(s, n, 0, k, (char)123, 0);}// Driver Codepublic static void main(String args[]){ String S = "abbbcdcdd"; int N = 9, K = 2; System.out.println(MinRunLengthEncoding(S, N, K));}}// This code is contributed by hemanth gadarla |
Python3
# Python3 program to implement# the above approachmaxN = 20dp = [[[[0 for i in range(maxN)] for j in range(27)] for k in range(27)] for l in range(maxN)]# Function which solves the desired problemdef solve(s, n, idx, k, last, count): # idx: current index in s # k: Remaining number of deletions # last: Previous character # count: Number of occurrences # of the previous character # Base Case if (k < 0): return n + 1 # If the entire string has # been traversed if (idx == n): return 0 ans = dp[idx][k][ord(last) - ord('a')][count] # If precomputed subproblem # occurred if (ans != -1): return ans ans = n + 1 # Minimum run length encoding by # removing the current character ans = min(ans, solve(s, n, idx + 1, k - 1, last, count)) # Minimum run length encoding by # retaining the current character inc = 0 if (count == 1 or count == 9 or count == 99): inc = 1 # If the current and the # previous characters match if (last == s[idx]): ans = min(ans, inc + solve(s, n, idx + 1, k, s[idx], count + 1)) # Otherwise else: ans = max(ans, 1 + solve(s, n, idx + 1, k, s[idx], 1)) dp[idx][k][ord(last) - ord('a')][count] = ans #print(ans) return dp[idx][k][ord(last) - ord('a')][count]# Function to return minimum run-length encoding# for string s by removing atmost k charactersdef MinRunLengthEncoding(s, n, k): for i in range(maxN): for j in range(27): for k in range(27): for l in range(maxN): dp[i][j][k][l] = -1 return solve(s, n, 0, k, chr(123), 0) - 1# Driver Codeif __name__ == '__main__': S = "abbbcdcdd" N = 9 K = 2 print(MinRunLengthEncoding(S, N, K))# This code is contributed by gauravrajput1 |
C#
// C# program to implement // the above approach using System;class GFG{static int maxN = 20;static int [,,,]dp = new int[maxN, maxN, 27, maxN];// Function which solves // the desired problempublic static int solve(String s, int n, int idx, int k, char last, int count){ // idx: current index in s // k: Remaining number of deletions // last: Previous character // count: Number of occurrences // of the previous character // Base Case if (k < 0) return n + 1; // If the entire string // has been traversed if (idx == n) return 0; int ans = dp[idx, k, last - 'a', count]; // If precomputed subproblem // occurred if (ans != -1) return ans; ans = n + 1; // Minimum run length encoding by // removing the current character ans = Math.Min(ans, solve(s, n, idx + 1, k - 1, last, count)); // Minimum run length encoding by // retaining the current character int inc = 0; if (count == 1 || count == 9 || count == 99) inc = 1; // If the current and the // previous characters match if (last == s[idx]) { ans = Math.Min(ans, inc + solve(s, n, idx + 1, k, s[idx], count + 1)); } // Otherwise else { ans = Math.Min(ans, 1 + solve(s, n, idx + 1, k, s[idx], 1)); } return dp[idx, k, last - 'a', count] = ans;}// Function to return minimum // run-length encoding for string // s by removing atmost k characterspublic static int MinRunLengthEncoding(String s, int n, int k){ for (int i = 0; i < maxN; i++) for (int j = 0; j < maxN; j++) for (int p = 0; p < 27; p++) for (int l = 0; l < maxN; l++) dp[i, j, p, l] = -1; return solve(s, n, 0, k, (char)123, 0);}// Driver Codepublic static void Main(String []args){ String S = "abbbcdcdd"; int N = 9, K = 2; Console.WriteLine( MinRunLengthEncoding(S, N, K));}}// This code is contributed by 29AjayKumar |
Javascript
<script> // JavaScript program to implement the above approach let maxN = 20; let dp = new Array(maxN); // Function which solves the desired problem function solve(s, n, idx, k, last, count) { // idx: current index in s // k: Remaining number of deletions // last: Previous character // count: Number of occurrences // of the previous character // Base Case if (k < 0) return n + 1; // If the entire string has // been traversed if (idx == n) return 0; let ans = dp[idx][k][last - 'a'.charCodeAt()][count]; // If precomputed subproblem // occurred if (ans != -1) return ans; ans = n + 1; // Minimum run length encoding by // removing the current character ans = Math.min(ans, solve(s, n, idx + 1, k - 1, last, count)); // Minimum run length encoding by // retaining the current character let inc = 0; if (count == 1 || count == 9 || count == 99) inc = 1; // If the current and the // previous characters match if (last == s[idx].charCodeAt()) { ans = Math.min(ans, inc + solve(s, n, idx + 1, k, s[idx].charCodeAt(), count + 1)); } // Otherwise else { ans = Math.min(ans, 1 + solve(s, n, idx + 1, k, s[idx].charCodeAt(), 1)); } dp[idx][k][last - 'a'.charCodeAt()][count] = ans; return dp[idx][k][last - 'a'.charCodeAt()][count]; } // Function to return minimum run-length encoding // for string s by removing atmost k characters function MinRunLengthEncoding(s, n, k) { for(let i = 0; i < maxN; i++) { dp[i] = new Array(maxN); for(let j = 0; j < maxN; j++) { dp[i][j] = new Array(27); for(let k = 0; k < 27; k++) { dp[i][j][k] = new Array(maxN); for(let l = 0; l < maxN; l++) { dp[i][j][k][l] = -1; } } } } return solve(s, n, 0, k, 123, 0); } let S = "abbbcdcdd"; let N = 9, K = 2; document.write(MinRunLengthEncoding(S, N, K)); </script> |
5
Time Complexity: O(26 * N2 * K)
Auxiliary Space: O(26 * N2 * K)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!
