Sunday, December 29, 2024
Google search engine
HomeData Modelling & AIMinimum K such that sum of array elements after division by K...

Minimum K such that sum of array elements after division by K does not exceed S

Given an array arr[] of N elements and an integer S. The task is to find the minimum number K such that the sum of the array elements does not exceed S after dividing all the elements by K
Note: Consider integer division.
Examples: 

Input: arr[] = {10, 7, 8, 10, 12, 19}, S = 27 
Output:
After dividing by 3, the array becomes 
{3, 2, 2, 3, 4, 6} and the new sum is 20.
Input: arr[] = {19, 17, 11, 10}, S = 40 
Output:

Naive approach: Iterate for all values of K from 1 to the maximum element in the array plus one not maximum element because if we put k as maximum element then the sum will be one and what if the S is given to us as zero. So we iterate from k=1 to max element in the array plus one. and then sum up the array elements by dividing with K, if the sum does not exceed S then the current value will be the answer. The time complexity of this approach will be O(M * N) where M is the maximum element in the array.

C++




#include <iostream>
#include <numeric> // Required for std::accumulate
 
// Define the FindK function to find the minimum value of K
int FindK(int arr[], int n, int S)
{
    // Initialize K to 1
    int K = 1;
 
    // Enter into a loop to find the minimum value of K
    while (true)
    {
        // Calculate the sum of the array after dividing each element by K
        int sumArr = std::accumulate(arr, arr+n, 0, [=](int a, int b) { return a + b/K; });
 
        // If the resulting sum is less than or equal to S, return K as the answer
        if (sumArr <= S)
        {
            return K;
        }
 
        // Otherwise, increment the value of K and repeat the loop
        K++;
    }
}
 
int main()
{
    // Define the input array and integer
    int arr[] = {10, 7, 8, 10, 12, 19};
    int n = sizeof(arr)/sizeof(arr[0]); // Find the size of the array
    int S = 27;
 
    // Call the FindK function with the input array and integer, and print the result
    std::cout << FindK(arr, n, S) << std::endl; // Output: 3
 
    return 0;
}


Java




import java.util.*;
 
public class Main {
 
    public static int FindK(int arr[], int n, int S) {
        int K = 1;
        while (true) {
          // declare a final variable k and assign the value of K to it
            final int k = K;
            int sumArr = Arrays.stream(arr).reduce(
                    0,
              // use the final variable k in the lambda expression
                    (a, b) -> a + b/k);
            if (sumArr <= S) {
                return K;
            }
            K++;
        }
    }
 
    public static void main(String[] args) {
        int arr[] = {10, 7, 8, 10, 12, 19};
        int n = arr.length;
        int S = 27;
 
        System.out.println(FindK(arr, n, S)); // Output: 3
    }
}


Python3




# Define the input array and integer
arr = [10, 7, 8, 10, 12, 19]
S = 27
 
# Define a function to find the minimum value of K
def find_k(arr, S):
    # Initialize K to 1
    K = 1
    # Enter into a loop to find the minimum value of K
    while True:
        # Calculate the sum of the array after dividing each element by K
        sum_arr = sum([i//K for i in arr])
        # If the resulting sum is less than or equal to S, return K as the answer
        if sum_arr <= S:
            return K
        # Otherwise, increment the value of K and repeat the loop
        K += 1
 
# Call the find_k function with the input array and integer, and print the result
print(find_k(arr, S))  # Output: 3


Javascript




// Define the input array and integer
const arr = [10, 7, 8, 10, 12, 19];
const S = 27;
 
// Define a function to find the minimum value of K
function find_k(arr, S) {
  // Initialize K to 1
  let K = 1;
  // Enter into a loop to find the minimum value of K
  while (true) {
    // Calculate the sum of the array after dividing each element by K
    let sum_arr = arr.reduce((acc, curr) => acc + Math.floor(curr / K), 0);
    // If the resulting sum is less than or equal to S, return K as the answer
    if (sum_arr <= S) {
      return K;
    }
    // Otherwise, increment the value of K and repeat the loop
    K++;
  }
}
 
// Call the find_k function with the input array and integer, and print the result
console.log(find_k(arr, S)); // Output: 3


C#




using System;
using System.Linq;
 
public class MinimumKValue
{
  public static void Main()
  {
    // Define the input array and integer
    int[] arr = {10, 7, 8, 10, 12, 19};
    int S = 27;
 
    // Call the FindK function with the input array and integer, and print the result
    Console.WriteLine(FindK(arr, S)); // Output: 3
  }
 
  // Define a function to find the minimum value of K
  public static int FindK(int[] arr, int S)
  {
    // Initialize K to 1
    int K = 1;
 
    // Enter into a loop to find the minimum value of K
    while (true)
    {
 
      // Calculate the sum of the array after dividing each element by K
      int sumArr = arr.Sum(i => i / K);
 
      // If the resulting sum is less than or equal to S, return K as the answer
      if (sumArr <= S)
      {
        return K;
      }
 
      // Otherwise, increment the value of K and repeat the loop
      K++;
    }
  }
}


Output

3

Efficient approach: An efficient approach is to find the value of K by performing a binary search on the answer. Initiate a binary search on the value of K and a check is done inside it to see if the sum exceeds K then the binary search is performed on the second half or the first half accordingly.
Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum value of k
// that satisfies the given condition
int findMinimumK(int a[], int n, int s)
{
    // Find the maximum element
    int maximum = a[0];
    for (int i = 0; i < n; i++) {
        maximum = max(maximum, a[i]);
    }
 
    // Lowest answer can be 1 and the
    // highest answer can be (maximum + 1)
    int low = 1, high = maximum + 1;
 
    int ans = high;
 
    // Binary search
    while (low <= high) {
 
        // Get the mid element
        int mid = (low + high) / 2;
        int sum = 0;
 
        // Calculate the sum after dividing
        // the array by new K which is mid
        for (int i = 0; i < n; i++) {
            sum += (int)(a[i] / mid);
        }
 
        // Search in the second half
        if (sum > s)
            low = mid + 1;
 
        // First half
        else {
            ans = min(ans, mid);
            high = mid - 1;
        }
    }
 
    return ans;
}
 
// Driver code
int main()
{
    int a[] = { 10, 7, 8, 10, 12, 19 };
    int n = sizeof(a) / sizeof(a[0]);
    int s = 27;
 
    cout << findMinimumK(a, n, s);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
    // Function to return the minimum value of k
    // that satisfies the given condition
    static int findMinimumK(int a[],
                            int n, int s)
    {
        // Find the maximum element
        int maximum = a[0];
         
        for (int i = 0; i < n; i++)
        {
            maximum = Math.max(maximum, a[i]);
        }
     
        // Lowest answer can be 1 and the
        // highest answer can be (maximum + 1)
        int low = 1, high = maximum + 1;
     
        int ans = high;
     
        // Binary search
        while (low <= high)
        {
     
            // Get the mid element
            int mid = (low + high) / 2;
            int sum = 0;
     
            // Calculate the sum after dividing
            // the array by new K which is mid
            for (int i = 0; i < n; i++)
            {
                sum += (int)(a[i] / mid);
            }
     
            // Search in the second half
            if (sum > s)
                low = mid + 1;
     
            // First half
            else
            {
                ans = Math.min(ans, mid);
                high = mid - 1;
            }
        }
        return ans;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int a[] = { 10, 7, 8, 10, 12, 19 };
        int n = a.length;
        int s = 27;
     
        System.out.println(findMinimumK(a, n, s));
    }
}   
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
 
# Function to return the minimum value of k
# that satisfies the given condition
def findMinimumK(a, n, s):
     
    # Find the maximum element
    maximum = a[0]
    for i in range(n):
        maximum = max(maximum, a[i])
 
    # Lowest answer can be 1 and the
    # highest answer can be (maximum + 1)
    low = 1
    high = maximum + 1
 
    ans = high
 
    # Binary search
    while (low <= high):
 
        # Get the mid element
        mid = (low + high) // 2
        sum = 0
 
        # Calculate the sum after dividing
        # the array by new K which is mid
        for i in range(n):
            sum += (a[i] // mid)
 
        # Search in the second half
        if (sum > s):
            low = mid + 1
 
        # First half
        else:
            ans = min(ans, mid)
            high = mid - 1
 
    return ans
 
# Driver code
a = [10, 7, 8, 10, 12, 19]
n = len(a)
s = 27
 
print(findMinimumK(a, n, s))
 
# This code is contributed by Mohit Kumar


Javascript




<script>
// javascript implementation of the approach    
// Function to return the minimum value of k
    // that satisfies the given condition
    function findMinimumK(a , n , s) {
        // Find the maximum element
        var maximum = a[0];
 
        for (i = 0; i < n; i++) {
            maximum = Math.max(maximum, a[i]);
        }
 
        // Lowest answer can be 1 and the
        // highest answer can be (maximum + 1)
        var low = 1, high = maximum + 1;
 
        var ans = high;
 
        // Binary search
        while (low <= high) {
 
            // Get the mid element
            var mid = parseInt((low + high) / 2);
            var sum = 0;
 
            // Calculate the sum after dividing
            // the array by new K which is mid
            for (i = 0; i < n; i++) {
                sum += parseInt( (a[i] / mid));
            }
 
            // Search in the second half
            if (sum > s)
                low = mid + 1;
 
            // First half
            else {
                ans = Math.min(ans, mid);
                high = mid - 1;
            }
        }
        return ans;
    }
 
    // Driver code
     
        var a = [ 10, 7, 8, 10, 12, 19 ];
        var n = a.length;
        var s = 27;
 
        document.write(findMinimumK(a, n, s));
 
// This code is contributed by todaysgaurav
</script>


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    // Function to return the minimum value of k
    // that satisfies the given condition
    static int findMinimumK(int []a,
                            int n, int s)
    {
        // Find the maximum element
        int maximum = a[0];
         
        for (int i = 0; i < n; i++)
        {
            maximum = Math.Max(maximum, a[i]);
        }
     
        // Lowest answer can be 1 and the
        // highest answer can be (maximum + 1)
        int low = 1, high = maximum + 1;
     
        int ans = high;
     
        // Binary search
        while (low <= high)
        {
     
            // Get the mid element
            int mid = (low + high) / 2;
            int sum = 0;
     
            // Calculate the sum after dividing
            // the array by new K which is mid
            for (int i = 0; i < n; i++)
            {
                sum += (int)(a[i] / mid);
            }
     
            // Search in the second half
            if (sum > s)
                low = mid + 1;
     
            // First half
            else
            {
                ans = Math.Min(ans, mid);
                high = mid - 1;
            }
        }
        return ans;
    }
     
    // Driver code
    public static void Main ()
    {
        int []a = { 10, 7, 8, 10, 12, 19 };
        int n = a.Length;
        int s = 27;
     
        Console.WriteLine(findMinimumK(a, n, s));
    }
}
 
// This code is contributed by AnkitRai01


Output: 

3

 

Time Complexity: O(N*(log N)), N=Array length

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments