Thursday, January 9, 2025
Google search engine
HomeLanguagesDynamic ProgrammingMinimum insertions to sort an array

Minimum insertions to sort an array

Given an array of integer numbers, we need to sort this array in a minimum number of steps where in one step we can insert any array element from its position to any other position. 
Examples : 
 

Input  : arr[] = [2, 3, 5, 1, 4, 7, 6]
Output : 3
We can sort above array in 3 insertion 
steps as shown below,
1 before array value 2
4 before array value 5
6 before array value 7

Input : arr[] = {4, 6, 5, 1}
Output : 2

 

We can solve this problem using dynamic programming. The main thing to observe is that moving an element doesn’t change the relative order of elements other than the element which is being moved. Now consider longest increasing subsequence (LIS) in which equal element are also taken as part of the increasing sequence, now if keep the element of this increasing sequence as it is and move all other elements then it will take the least number of steps because we have taken longest subsequence which does not need to be moved. Finally, the answer will be the size of the array minus the size of the longest increasing subsequence. 
As LIS problem can be solved in O(N^2) with O(N) extra space using Dynamic Programming.
Below is the implementation of above idea.
 

C++




// C++ program to get minimum number of insertion
// steps to sort an array
#include <bits/stdc++.h>
using namespace std;
 
//  method returns min steps of insertion we need
// to perform to sort array 'arr'
int minInsertionStepToSortArray(int arr[], int N)
{
    // lis[i] is going to store length of lis
    // that ends with i.
    int lis[N];
 
    /* Initialize lis values for all indexes */
    for (int i = 0; i < N; i++)
        lis[i] = 1;
 
    /* Compute optimized lis values in bottom up manner */
    for (int i = 1; i < N; i++)
        for (int j = 0; j < i; j++)
            if (arr[i] >= arr[j] && lis[i] < lis[j] + 1)
                lis[i] = lis[j] + 1;
 
    /* The overall LIS must end with of the array
       elements. Pick maximum of all lis values */
    int max = 0;
    for (int i = 0; i < N; i++)
        if (max < lis[i])
            max = lis[i];
 
    // return size of array minus length of LIS
    // as final result
    return (N - max);
}
 
// Driver code to test above methods
int main()
{
    int arr[] = {2, 3, 5, 1, 4, 7, 6};
    int N = sizeof(arr) / sizeof(arr[0]);
    cout << minInsertionStepToSortArray(arr, N);
    return 0;
}


Java




// Java program to get minimum number of insertion
// steps to sort an array
import java.util.*;
import java.io.*;
 
class Main
{
 
    //  method returns min steps of insertion we need
    // to perform to sort array 'arr'
    static int minInsertionStepToSortArray(int arr[], int N)
    {
        // lis[i] is going to store length of lis
        // that ends with i.
        int[] lis = new int[N];
      
        /* Initialize lis values for all indexes */
        for (int i = 0; i < N; i++)
            lis[i] = 1;
      
        /* Compute optimized lis values in bottom up manner */
        for (int i = 1; i < N; i++)
            for (int j = 0; j < i; j++)
                if (arr[i] >= arr[j] && lis[i] < lis[j] + 1)
                    lis[i] = lis[j] + 1;
      
        /* The overall LIS must end with of the array
           elements. Pick maximum of all lis values */
        int max = 0;
        for (int i = 0; i < N; i++)
            if (max < lis[i])
                max = lis[i];
      
        // return size of array minus length of LIS
        // as final result
        return (N - max);
    }
      
    // Driver code to test above methods
    public static void main (String[] args)
    {
        int arr[] = {2, 3, 5, 1, 4, 7, 6};
        int N = arr.length;
        System.out.println(minInsertionStepToSortArray(arr, N));
    }
}
 
/* This code is contributed by Harsh Agarwal */


Python 3




# Python3 program to get minimum number
# of insertion steps to sort an array
 
# method returns min steps of insertion
# we need to perform to sort array 'arr'
def minInsertionStepToSortArray(arr, N):
 
    # lis[i] is going to store length
    # of lis that ends with i.
    lis = [0] * N
 
    # Initialize lis values for all indexes
    for i in range(N):
        lis[i] = 1
 
    # Compute optimized lis values in
    # bottom up manner
    for i in range(1, N):
        for j in range(i):
            if (arr[i] >= arr[j] and
                lis[i] < lis[j] + 1):
                lis[i] = lis[j] + 1
 
    # The overall LIS must end with of the array
    # elements. Pick maximum of all lis values
    max = 0
    for i in range(N):
        if (max < lis[i]):
            max = lis[i]
 
    # return size of array minus length
    # of LIS as final result
    return (N - max)
 
# Driver Code
if __name__ == "__main__":
    arr = [2, 3, 5, 1, 4, 7, 6]
    N = len(arr)
    print (minInsertionStepToSortArray(arr, N))
 
# This code is contributed by ita_c


C#




// C# program to get minimum number of
// insertion steps to sort an array
using System;
 
class GfG {
     
    // method returns min steps of insertion
    // we need to perform to sort array 'arr'
    static int minInsertionStepToSortArray(
                             int []arr, int N)
    {
         
        // lis[i] is going to store length
        // of lis that ends with i.
        int[] lis = new int[N];
     
        /* Initialize lis values for all
        indexes */
        for (int i = 0; i < N; i++)
            lis[i] = 1;
     
        /* Compute optimized lis values in
        bottom up manner */
        for (int i = 1; i < N; i++)
            for (int j = 0; j < i; j++)
                if (arr[i] >= arr[j] &&
                        lis[i] < lis[j] + 1)
                    lis[i] = lis[j] + 1;
     
        /* The overall LIS must end with of
        the array elements. Pick maximum
        of all lis values */
        int max = 0;
         
        for (int i = 0; i < N; i++)
            if (max < lis[i])
                max = lis[i];
     
        // return size of array minus length
        // of LIS as final result
        return (N - max);
    }
     
    // Driver code to test above methods
    public static void Main (String[] args)
    {
        int []arr = {2, 3, 5, 1, 4, 7, 6};
        int N = arr.Length;
         
        Console.Write(
          minInsertionStepToSortArray(arr, N));
    }
}
 
// This code is contributed by parashar.


PHP




<?php
// PHP program to get minimum
// number of insertion steps
// to sort an array
 
// method returns min steps of
// insertion we need to perform
// to sort array 'arr'
function minInsertionStepToSortArray($arr, $N)
{
    // lis[i] is going to store
    // length of lis that ends with i.
    $lis[$N] = 0;
 
    /* Initialize lis values
    for all indexes */
    for ($i = 0; $i < $N; $i++)
        $lis[$i] = 1;
 
    /* Compute optimized lis values
       in bottom up manner */
    for ($i = 1; $i < $N; $i++)
        for ($j = 0; $j < $i; $j++)
            if ($arr[$i] >= $arr[$j] &&
                $lis[$i] < $lis[$j] + 1)
                 
                $lis[$i] = $lis[$j] + 1;
 
    /* The overall LIS must end with
    of the array elements. Pick
    maximum of all lis values */
    $max = 0;
    for ($i = 0; $i < $N; $i++)
        if ($max < $lis[$i])
            $max = $lis[$i];
 
    // return size of array minus
    // length of LIS as final result
    return ($N - $max);
}
 
// Driver code
$arr = array(2, 3, 5, 1, 4, 7, 6);
$N = sizeof($arr) / sizeof($arr[0]);
echo minInsertionStepToSortArray($arr, $N);
     
// This code is contributed by nitin mittal
?>


Javascript




<script>
// Javascript program to get minimum number of insertion
// steps to sort an array
 
    //  method returns min steps of insertion we need
    // to perform to sort array 'arr'
    function minInsertionStepToSortArray(arr,N)
    {
     
        // lis[i] is going to store length of lis
        // that ends with i.
        let lis = new Array(N);
         
        /* Initialize lis values for all indexes */
        for (let i = 0; i < N; i++)
        {
            lis[i] = 1;
        }
         
        /* Compute optimized lis values in bottom up manner */
        for (let i = 1; i < N; i++)
        {
            for (let j = 0; j < i; j++)
            {
                if (arr[i] >= arr[j] && lis[i] < lis[j] + 1)
                {
                    lis[i] = lis[j] + 1;
                }
            }
        }
         
        /* The overall LIS must end with of the array
           elements. Pick maximum of all lis values */
        let max = 0;
        for (let i = 0; i < N; i++)
        {
            if (max < lis[i])
            {
                max = lis[i];
            }
        }
         
        // return size of array minus length of LIS
        // as final result
        return (N - max);
    }
     
    // Driver code to test above methods
    let arr = new Array(2, 3, 5, 1, 4, 7, 6);
    let N = arr.length;
    document.write(minInsertionStepToSortArray(arr, N));
     
    // This code is contributed by avanitrachhadiya2155
</script>


Output

3

This article is contributed by Utkarsh Trivedi. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments