Sunday, December 29, 2024
Google search engine
HomeData Modelling & AIMinimum insertions to make a Co-prime array

Minimum insertions to make a Co-prime array

Given an array of N elements, find the minimum number of insertions to convert the given array into a co-prime array. Print the resultant array also.
Co-prime Array : An array in which every pair of adjacent elements are co-primes. i.e, gcd(a, b) = 1      .

Examples : 

Input :  A[] = {2, 7, 28}
Output : 1
Explanation : 
Here, 1st pair = {2, 7} are co-primes( gcd(2, 7) = 1).
2nd pair = {7, 28} are not co-primes, insert 9
between them. gcd(7, 9) = 1 and gcd(9, 28) = 1.

Input : A[] = {5, 10, 20}
Output : 2
Explanation : 
Here, there is no pair which are co-primes. 
Insert 7 between (5, 10) and 1 between (10, 20).

Recommended Practice

Observe that to make a pair to become co-primes we have to insert a number which makes the newly formed pairs co-primes. So, we have to check every adjacent pair for their co-primality and insert a number if required. Now, what is the number that should be inserted? Let us take two numbers a and b. If any of a or b is 1, then GCD(a, b) = 1. So, we can insert ONE(1) at every pair. For efficiency we use euler’s gcd function .

Below is the implementation of the above approach:  

C++




// CPP program for minimum insertions to
// make a Co-prime Array.
#include <bits/stdc++.h>
using namespace std;
 
void printResult(int arr[], int n)
{
    // Counting adjacent pairs that are not
    // co-prime.
    int count = 0;
    for (int i = 1; i < n; i++)    
        if (__gcd(arr[i], arr[i - 1]) != 1)
            count++;
 
    cout << count << endl; // No.of insertions
    cout << arr[0] << " ";
    for (int i = 1; i < n; i++)
    {
        // If pair is not a co-prime insert 1.
        if (__gcd(arr[i], arr[i - 1]) != 1)
            cout << 1 << " ";
        cout << arr[i] << " ";
    }
}
 
// Driver Function
int main()
{
    int A[] = { 5, 10, 20 };
    int n = sizeof(A) / sizeof(A[0]);
    printResult(A, n);
    return 0;
}


Java




//Java program for minimum insertions
// to make a Co-prime Array.
import java.io.*;
 
class GFG {
     
    // Recursive function to return
    // gcd of a and b
    static int gcd(int a, int b)
    {
        // Everything divides 0
        if (a == 0 || b == 0)
        return 0;
     
        // base case
        if (a == b)
            return a;
     
        // a is greater
        if (a > b)
            return gcd(a-b, b);
 
        return gcd(a, b-a);
    }
     
    static void printResult(int arr[], int n)
    {
         
        // Counting adjacent pairs that are not
        // co-prime.
        int count = 0;
 
        for (int i = 1; i < n; i++)    
            if (gcd(arr[i], arr[i - 1]) != 1)
                count++;
     
        // No.of insertions
        System.out.println(count );
        System.out.print (arr[0] + " ");
 
        for (int i = 1; i < n; i++)
        {
             
            // If pair is not a co-prime insert 1.
            if (gcd(arr[i], arr[i - 1]) != 1)
                System.out.print( 1 + " ");
            System.out.print(arr[i] + " ");
        }
    }
     
    // Driver Function
    public static void main(String args[])
    {
        int A[] = { 5, 10, 20 };
        int n = A.length;
        printResult(A, n);
    }
}
 
/*This code is contributed by Nikita Tiwari.*/


Python3




# Python3 code for minimum insertions
# to make a Co-prime Array.
from fractions import gcd
 
def printResult(arr, n):
 
    # Counting adjacent pairs that
    # are not co-prime.
    count = 0
    for i in range(1,n):
        if (gcd(arr[i], arr[i - 1]) != 1):
            count+=1
     
    print(count)     # No.of insertions
    print( arr[0], end = " ")
    for i in range(1,n):
         
        # If pair is not a co-prime insert 1.
        if (gcd(arr[i], arr[i - 1]) != 1):
            print(1, end = " ")
        print(arr[i] , end = " ")
         
# Driver Code
A = [ 5, 10, 20 ]
n = len(A)
printResult(A, n)
 
# This code is contributed by "Sharad_Bhardwaj".


C#




// C# program for minimum insertions
// to make a Co-prime Array.
using System;
 
class GFG {
 
    // Recursive function to return
    // gcd of a and b
    static int gcd(int a, int b)
    {
        // Everything divides 0
        if (a == 0 || b == 0)
            return 0;
 
        // base case
        if (a == b)
            return a;
 
        // a is greater
        if (a > b)
            return gcd(a - b, b);
 
        return gcd(a, b - a);
    }
 
    static void printResult(int[] arr, int n)
    {
        // Counting adjacent pairs that
        // are not co-prime.
        int count = 0;
 
        for (int i = 1; i < n; i++)
            if (gcd(arr[i], arr[i - 1]) != 1)
                count++;
 
        // No.of insertions
        Console.WriteLine(count);
        Console.Write(arr[0] + " ");
 
        for (int i = 1; i < n; i++) {
 
            // If pair is not a co-prime insert 1.
            if (gcd(arr[i], arr[i - 1]) != 1)
                Console.Write(1 + " ");
            Console.Write(arr[i] + " ");
        }
    }
 
    // Driver Function
    public static void Main()
    {
        int[] A = { 5, 10, 20 };
        int n = A.Length;
        printResult(A, n);
    }
}
 
/*This code is contributed by vt_m.*/


PHP




<?php
// PHP program for minimum
// insertions to make a
// Co-prime Array.
 
// Recursive function to
// return gcd of a and b
function gcd($a, $b)
{
    // Everything divides 0
    if ($a == 0 || $b == 0)
        return 0;
 
    // base case
    if ($a == $b)
        return $a;
 
    // a is greater
    if ($a > $b)
        return gcd($a - $b, $b);
 
    return gcd($a, $b - $a);
}
 
function printResult($arr, $n)
{
    // Counting adjacent pairs
    // that are not co-prime.
    $count = 0;
 
    for ($i = 1; $i < $n; $i++)
        if (gcd($arr[$i],
                $arr[$i - 1]) != 1)
            $count++;
 
    // No.of insertions
    echo $count, "\n";
    echo $arr[0] , " ";
 
    for ($i = 1; $i < $n; $i++)
    {
 
        // If pair is not a
        // co-prime insert 1.
        if (gcd($arr[$i],
                $arr[$i - 1]) != 1)
            echo 1 , " ";
        echo $arr[$i] , " ";
    }
}
 
// Driver Code
$A = array(5, 10, 20);
$n = sizeof($A);
printResult($A, $n);
 
// This code is contributed
// by ajit
?>


Javascript




<script>
 
// Javascript program for minimum insertions
// to make a Co-prime Array.
 
// Recursive function to return
// gcd of a and b
function gcd(a, b)
{
     
    // Everything divides 0
    if (a == 0 || b == 0)
        return 0;
 
    // base case
    if (a == b)
        return a;
 
    // a is greater
    if (a > b)
        return gcd(a - b, b);
 
    return gcd(a, b - a);
}
 
function printResult(arr, n)
{
     
    // Counting adjacent pairs that
    // are not co-prime.
    let count = 0;
 
    for(let i = 1; i < n; i++)
        if (gcd(arr[i], arr[i - 1]) != 1)
            count++;
 
    // No.of insertions
    document.write(count + "</br>");
    document.write(arr[0] + " ");
 
    for(let i = 1; i < n; i++)
    {
         
        // If pair is not a co-prime insert 1.
        if (gcd(arr[i], arr[i - 1]) != 1)
            document.write(1 + " ");
             
        document.write(arr[i] + " ");
    }
}
 
// Driver code
let A = [ 5, 10, 20 ];
let n = A.length;
 
printResult(A, n);
 
// This code is contributed by suresh07
 
</script>


Output

2
5 1 10 1 20 

Time Complexity: O(n log(Ai)), for using __gcd function
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments