Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMinimum flips required to convert given string into concatenation of equal substrings...

Minimum flips required to convert given string into concatenation of equal substrings of length K

Given a binary string S and an integer K, the task is to find the minimum number of flips required to convert the given string into a concatenation of K-length equal sub-strings. It is given that the given string can be split into K-length substrings.

Examples: 

Input: S = “101100101”, K = 3 
Output:
Explanation: 
Flip the ‘0’ from index 5 to ‘1’. 
The resultant string is S = “101101101”. 
It is the concatenation of substring “101”. 
Hence, the minimum number of flips required is 1.

Input: S = “10110111”, K = 4 
Output:
Explanation: 
Flip the ‘0’ and ‘1’ at indexes 4 and 5 respectively. 
The resultant string is S = “10111011”. 
It is the concatenation of the substring “1011”. 
Hence, the minimum number of flips required is 2.

Approach: 
The problem can be solved using Greedy Approach
Follow the steps below:

  • Iterate the given string with increments of K indices from each index and keep a count of the 0s and 1s.
  • The character which occurs the minimum number of times must be flipped and keep incrementing that count.
  • Perform the above steps for all the indices from 0 to K-1 to obtain the minimum number of flips required.

Below is the implementation of the above approach:

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns the minimum
// number of flips to convert
// the s into a concatenation
// of K-length sub-string
int minOperations(string S, int K)
{
    // Stores the result
    int ans = 0;
 
    // Iterate through string index
    for (int i = 0; i < K; i++) {
 
        // Stores count of 0s & 1s
        int zero = 0, one = 0;
 
        // Iterate making K jumps
        for (int j = i;
             j < S.size(); j += K) {
 
            // Count 0's
            if (S[j] == '0')
                zero++;
 
            // Count 1's
            else
                one++;
        }
 
        // Add minimum flips
        // for index i
        ans += min(zero, one);
    }
 
    // Return minimum number
    // of flips
    return ans;
}
 
// Driver Code
int main()
{
    string S = "110100101";
 
    int K = 3;
 
    cout << minOperations(S, K);
 
    return 0;
}


Java




// Java program to implement
// the above approach
import java.io.*;
 
class GFG{
 
// Function that returns the minimum
// number of flips to convert
// the s into a concatenation
// of K-length sub-string
public static int minOperations(String S, int K)
{
     
    // Stores the result
    int ans = 0;
 
    // Iterate through string index
    for(int i = 0; i < K; i++)
    {
 
        // Stores count of 0s & 1s
        int zero = 0, one = 0;
 
        // Iterate making K jumps
        for(int j = i; j < S.length(); j += K)
        {
             
            // Count 0's
            if (S.charAt(j) == '0')
                zero++;
 
            // Count 1's
            else
                one++;
        }
 
        // Add minimum flips
        // for index i
        ans += Math.min(zero, one);
    }
 
    // Return minimum number
    // of flips
    return ans;
}
 
// Driver Code
public static void main(String args[])
{
    String S = "110100101";
 
    int K = 3;
 
    System.out.println(minOperations(S, K));
}
}
 
// This code is contributed by grand_master


Python3




# Python3 program to implement
# the above approach
 
# Function that returns the minimum
# number of flips to convert the s
# into a concatenation of K-length
# sub-string
def minOperations(S, K):
 
    # Stores the result
    ans = 0
 
    # Iterate through string index
    for i in range(K):
 
        # Stores count of 0s & 1s
        zero, one = 0, 0
 
        # Iterate making K jumps
        for j in range(i, len(S), K):
 
            # Count 0's
            if(S[j] == '0'):
                zero += 1
 
            # Count 1's
            else:
                one += 1
 
        # Add minimum flips
        # for index i
        ans += min(zero, one)
 
    # Return minimum number
    # of flips
    return ans
 
# Driver code
if __name__ == '__main__':
 
    s = "110100101"
    K = 3
 
    print(minOperations(s, K))
 
# This code is contributed by Shivam Singh


C#




// C# program to implement
// the above approach
using System;
 
class GFG{
 
// Function that returns the minimum
// number of flips to convert
// the s into a concatenation
// of K-length sub-string
public static int minOperations(String S, int K)
{
     
    // Stores the result
    int ans = 0;
 
    // Iterate through string index
    for(int i = 0; i < K; i++)
    {
 
        // Stores count of 0s & 1s
        int zero = 0, one = 0;
 
        // Iterate making K jumps
        for(int j = i; j < S.Length; j += K)
        {
             
            // Count 0's
            if (S[j] == '0')
                zero++;
 
            // Count 1's
            else
                one++;
        }
 
        // Add minimum flips
        // for index i
        ans += Math.Min(zero, one);
    }
 
    // Return minimum number
    // of flips
    return ans;
}
 
// Driver Code
public static void Main(String []args)
{
    String S = "110100101";
 
    int K = 3;
 
    Console.WriteLine(minOperations(S, K));
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
      // JavaScript program to implement
      // the above approach
      // Function that returns the minimum
      // number of flips to convert
      // the s into a concatenation
      // of K-length sub-string
      function minOperations(S, K) {
        // Stores the result
        var ans = 0;
 
        // Iterate through string index
        for (var i = 0; i < K; i++) {
          // Stores count of 0s & 1s
          var zero = 0,
            one = 0;
 
          // Iterate making K jumps
          for (var j = i; j < S.length; j += K) {
            // Count 0's
            if (S[j] === "0")
                zero++;
            // Count 1's
            else
                one++;
          }
 
          // Add minimum flips
          // for index i
          ans += Math.min(zero, one);
        }
 
        // Return minimum number
        // of flips
        return ans;
      }
 
      // Driver Code
      var S = "110100101";
      var K = 3;
 
      document.write(minOperations(S, K));
</script>


Output: 

2

 

Time Complexity: O(N) 
Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments