Given a binary array arr[] of length N, the task is to find the minimum flips required in the array such that XOR of a consecutive sub-arrays of size K have different parity.
Examples:
Input: arr[] = {0, 1, 0, 1, 1}, K = 2
Output: 2
Explanation:
For the above given array XOR of consecutive sub-array of size 2 is: {(0, 1): 1, (1, 0): 1, (0, 1): 1, (1, 1): 0}
There are two flips required which can be done on the following indices:
Index 0: It is required to flip the bit of the 0th index, such that XOR of first sub-array remains 1.
Index 1: It is required to flip the bit of 1st index, such that XOR of second sub-array becomes 0.
Input: arr[]={0, 0, 1, 1, 0, 0}, K = 3
Output: 1
Explanation:
For the above given array XOR of consecutive sub-array of size 2 is: {(0, 0, 1): 1, (0, 1, 1): 0, (1, 1, 0): 0, (1, 0, 0): 1}
There is one flip required which can be done on the following indices:
Index 4: It is required to flip the bit of the 4th index, such that XOR of third sub-array becomes 1 and XOR of fourth subarray becomes 0.
Approach: To make the different parity of consecutive subarrays, the total array is dependent upon the first subarray of size K. That is every next subarray of size K should be the negation of the previous subarray.
For Example: For an array of size 4, such that consecutive subarray of size 2 have different parity:
Let the first subarray of size 2 be {1, 1} Then the next subarray can be {0, 0} Consecutive subarrays of size 2 in this array: {(1, 1): 0, (1, 0): 1, (0, 0): 0}
Below is the implementation of the above approach:
C++
// C++ implementation to find the // minimum flips required such that // alternate subarrays have // different parity #include <iostream> #include <limits.h> using namespace std; // Function to find the minimum // flips required in binary array int count_flips( int a[], int n, int k) { // Boolean value to indicate // odd or even value of 1's bool set = false ; int ans = 0, min_diff = INT_MAX; // Loop to iterate over // the subarrays of size K for ( int i = 0; i < k; i++) { // curr_index is used to iterate // over all the subarrays int curr_index = i, segment = 0, count_zero = 0, count_one = 0; // Loop to iterate over the array // at the jump of K to // consider every parity while (curr_index < n) { // Condition to check if the // subarray is at even position if (segment % 2 == 0) { // The value needs to be // same as the first subarray if (a[curr_index] == 1) count_zero++; else count_one++; } else { // The value needs to be // opposite of the first subarray if (a[curr_index] == 0) count_zero++; else count_one++; } curr_index = curr_index + k; segment++; } ans += min(count_one, count_zero); if (count_one < count_zero) set = !set; // Update the minimum difference min_diff = min(min_diff, abs (count_zero - count_one)); } // Condition to check if the 1s // in the subarray is odd if (set) return ans; else return ans + min_diff; } // Driver Code int main() { int n = 6, k = 3; int a[] = { 0, 0, 1, 1, 0, 0 }; cout << count_flips(a, n, k); } |
Java
// Java implementation to find the minimum flips // required such that alternate subarrays // have different parity import java.util.*; class Count_Flips { // Function to find the minimum // flips required in binary array public static int count_flips( int a[], int n, int k){ // Boolean value to indicate // odd or even value of 1's boolean set = false ; int ans = 0 , min_diff = Integer.MAX_VALUE; // Loop to iterate over // the subarrays of size K for ( int i = 0 ; i < k; i++) { // curr_index is used to iterate // over all the subarrays int curr_index = i, segment = 0 , count_zero = 0 , count_one = 0 ; // Loop to iterate over the array // at the jump of K to // consider every parity while (curr_index < n) { // Condition to check if the // subarray is at even position if (segment % 2 == 0 ) { // The value needs to be // same as the first subarray if (a[curr_index] == 1 ) count_zero++; else count_one++; } else { // The value needs to be // opposite of the first subarray if (a[curr_index] == 0 ) count_zero++; else count_one++; } curr_index = curr_index + k; segment++; } ans += Math.min(count_one, count_zero); if (count_one < count_zero) set = !set; // Update the minimum difference min_diff = Math.min(min_diff, Math.abs(count_zero - count_one)); } // Condition to check if the 1s // in the subarray is odd if (set) return ans; else return ans + min_diff; } // Driver Code public static void main(String[] args) { int n = 6 , k = 3 ; int a[] = { 0 , 0 , 1 , 1 , 0 , 0 }; System.out.println(count_flips(a, n, k)); } } |
Python3
# Python implementation to find the # minimum flips required such that # alternate subarrays have # different parity # Function to find the minimum # flips required in binary array def count_flips(a, n, k): min_diff, ans, set = n, 0 , False # Loop to iterate over # the subarrays of size K for i in range (k): # curr_index is used to iterate # over all the subarrays curr_index, segment,\ count_zero, count_one = \ i, 0 , 0 , 0 # Loop to iterate over the array # at the jump of K to # consider every parity while curr_index < n: # Condition to check if the # subarray is at even position if segment % 2 = = 0 : # The value needs to be # same as the first subarray if a[curr_index] = = 1 : count_zero + = 1 else : count_one + = 1 else : # The value needs to be # opposite of the first subarray if a[curr_index] = = 0 : count_zero + = 1 else : count_one + = 1 curr_index + = k segment + = 1 ans + = min (count_zero, count_one) if count_one<count_zero: set = not set min_diff = min (min_diff,\ abs (count_zero - count_one)) # Condition to check if the 1s # in the subarray is odd if set : return ans else : return ans + min_diff # Driver Code if __name__ = = "__main__" : n, k = 6 , 3 a = [ 0 , 0 , 1 , 1 , 0 , 0 ] print (count_flips(a, n, k)) |
C#
// C# implementation to find the minimum flips // required such that alternate subarrays // have different parity using System; class Count_Flips { // Function to find the minimum // flips required in binary array static int count_flips( int []a, int n, int k) { // Boolean value to indicate // odd or even value of 1's bool set = false ; int ans = 0, min_diff = int .MaxValue; // Loop to iterate over // the subarrays of size K for ( int i = 0; i < k; i++) { // curr_index is used to iterate // over all the subarrays int curr_index = i, segment = 0, count_zero = 0, count_one = 0; // Loop to iterate over the array // at the jump of K to // consider every parity while (curr_index < n) { // Condition to check if the // subarray is at even position if (segment % 2 == 0) { // The value needs to be // same as the first subarray if (a[curr_index] == 1) count_zero++; else count_one++; } else { // The value needs to be // opposite of the first subarray if (a[curr_index] == 0) count_zero++; else count_one++; } curr_index = curr_index + k; segment++; } ans += Math.Min(count_one, count_zero); if (count_one < count_zero) set = ! set ; // Update the minimum difference min_diff = Math.Min(min_diff, Math.Abs(count_zero - count_one)); } // Condition to check if the 1s // in the subarray is odd if ( set ) return ans; else return ans + min_diff; } // Driver Code public static void Main( string [] args) { int n = 6, k = 3; int []a = { 0, 0, 1, 1, 0, 0 }; Console.WriteLine(count_flips(a, n, k)); } } // This code is contributed by Yash_R |
Javascript
<script> // Javascript implementation to find the minimum flips // required such that alternate subarrays // have different parity // Function to find the minimum // flips required in binary array function count_flips(a , n , k) { // Boolean value to indicate // odd or even value of 1's var set = false ; var ans = 0, min_diff = Number.MAX_VALUE; // Loop to iterate over // the subarrays of size K for (i = 0; i < k; i++) { // curr_index is used to iterate // over all the subarrays var curr_index = i, segment = 0, count_zero = 0, count_one = 0; // Loop to iterate over the array // at the jump of K to // consider every parity while (curr_index < n) { // Condition to check if the // subarray is at even position if (segment % 2 == 0) { // The value needs to be // same as the first subarray if (a[curr_index] == 1) count_zero++; else count_one++; } else { // The value needs to be // opposite of the first subarray if (a[curr_index] == 0) count_zero++; else count_one++; } curr_index = curr_index + k; segment++; } ans += Math.min(count_one, count_zero); if (count_one < count_zero) set = !set; // Update the minimum difference min_diff = Math.min(min_diff, Math.abs(count_zero - count_one)); } // Condition to check if the 1s // in the subarray is odd if (set) return ans; else return ans + min_diff; } // Driver Code var n = 6, k = 3; var a = [ 0, 0, 1, 1, 0, 0 ]; document.write(count_flips(a, n, k)); // This code contributed by Rajput-Ji </script> |
1
Performance Analysis:
- Time Complexity: As in the above approach, There is only one loop which takes O(N) time in worst case. Hence the Time Complexity will be O(N).
- Auxiliary Space Complexity: As in the above approach, There is no extra space used. Hence the auxiliary space complexity will be O(1).
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!