Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AIMinimum elements to be inserted such that no Subarray has sum 0

Minimum elements to be inserted such that no Subarray has sum 0

Given an array arr[] of N integers such that no element is 0 in that array, the task is to find the minimum number of elements to be inserted such that no subarray of the new array has sum 0.

Examples:

Input: N = 3, arr[] = {1, -1, 1}
Output: 2
Explanation: As in the array the sum of first two element is 0 that is 1+(-1) =  0. 
To avoid this, insert an element. Insert 10 at position 2. 
The array become {1, 10, -1, 1}. 
Now the sum of last 2 element is 0. To avoid this insert an element. 
Insert 10 at position 4. Array become {1, 10, -1, 10, 1}. 
Now, no subarray have sum 0. 
So we have to insert minimum 2 integers in the array.

Input: N = 4, arr[] = {-2, 1, 2, 3}
Output: 
Explanation: No array is there whose sum is 0. 
So no need to insert element.

Approach: The problem can be solved based on the following observation.

Observations:

  • If we get any subarray with sum 0. Then insert an element just 1 place before the position where you got sum 0. So that sum will not remain 0 and start doing sum again.
  • Do the same process till the end and print how many times you have inserted element.

Follow the steps to solve the problem:

  • Take an unordered_map to store the sum detail to know if there is a subarray with sum 0.
  • Take a variable ans and initialize it to 0 to store the minimum number of elements to be inserted.
  • Traverse the array and add every element into the array and also note the sum detail in the map.
  • If, you got sum 0 (which can be found by checking if the sum is already present in the map): 
    • Then increase the ans by 1 and change the sum to the current element value because you have taken care of the previous elements and also remove the entries of the sum from the map.
    • Repeat this step whenever there is a subarray with sum 0.
  • In last return ans.

Below is the implementation for the above approach.

C++




// C++ code for the above approach:
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum count
// of required insertions
int getElements(int N, int arr[])
{
    // To store the previous sums
    unordered_map<long long int, int> forSum;
 
    // Final answer
    int ans = 0;
 
    // To store current sum
    long long int sum = 0;
 
    // Traversing array
    for (int i = 0; i < N; i++) {
 
        // Adding elements
        sum += arr[i];
 
        // Storing occurrence
        forSum[sum]++;
 
        // If found any subarray with sum 0
        if (sum == 0 || forSum[sum] > 1) {
            ans++;
 
            // New sum
            sum = arr[i];
 
            // Clearing previous data
            forSum.clear();
 
            // Storing new sum
            forSum[sum]++;
        }
    }
    return ans;
}
 
// Driver code
int main()
{
    int N = 3;
    int arr[] = { 1, -1, 1 };
 
    // Function call
    cout << getElements(N, arr) << endl;
    return 0;
}


Java




// Java code for the above approach:
import java.io.*;
import java.util.*;
 
class GFG
{
 
  // Function to find the minimum count
  // of required insertions
  public static int getElements(int N, int arr[])
  {
 
    // To store the previous sums
    HashMap<Integer, Integer> forSum
      = new HashMap<Integer, Integer>();
    // Final answer
    int ans = 0;
 
    // To store current sum
    int sum = 0;
 
    // Traversing array
    for (int i = 0; i < N; i++) {
 
      // Adding elements
      sum += arr[i];
 
      // Storing occurrence
      if (forSum.get(sum) != null)
        forSum.put(sum, forSum.get(sum) + 1);
      else
        forSum.put(sum, 1);
 
      // If found any subarray with sum 0
      if (sum == 0
          || (forSum.get(sum) != null
              && forSum.get(sum) > 1)) {
        ans++;
 
        // New sum
        sum = arr[i];
 
        // Clearing previous data
        forSum.clear();
 
        // Storing new sum
        forSum.put(sum, 1);
      }
    }
    return ans;
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    int N = 3;
    int arr[] = { 1, -1, 1 };
 
    // Function call
    System.out.print(getElements(N, arr));
  }
}
 
// This code is contributed by Rohit Pradhan


Python3




# Python code for the above approach
 
# Function to find the minimum count
# of required insertions
def getElements(N, arr):
   
    # To store the previous sums
    forSum = {}
 
    # Final answer
    ans = 0;
 
    # To store current sum
    sum = 0;
 
    # Traversing array
    for i in range(N):
 
        # Adding elements
        sum += arr[i];
 
        # Storing occurrence
        if(sum in forSum):
            forSum[sum] += 1
        else:
            forSum[sum] = 1
 
        # If found any subarray with sum 0
        if (sum == 0 or forSum[sum] > 1):
            ans += 1
 
            # New sum
            sum = arr[i];
 
            # Clearing previous data
            forSum.clear();
 
            # Storing new sum
            if(sum in forSum):
                forSum[sum] += 1
            else:
                forSum[sum] = 1
 
    return ans;
 
# Driver Code
N = 3;
arr = [ 1, -1, 1 ];
 
# Function call
print(getElements(N, arr));
         
# This code is contributed by Saurabh Jaiswal


C#




// C# implementation of above approach
using System;
using System.Collections.Generic;
 
class GFG {
 
  // Function to find the minimum count
  // of required insertions
  static int getElements(int N, int[] arr)
  {
 
    // To store the previous sums
    Dictionary<int,
    int> forSum = new Dictionary<int,int>();
 
    // Final answer
    int ans = 0;
 
    // To store current sum
    int sum = 0;
 
    // Traversing array
    for (int i = 0; i < N; i++) {
 
      // Adding elements
      sum += arr[i];
 
      // Storing occurrence
      forSum.Add(sum, 1);
 
      // If found any subarray with sum 0
      if (sum == 0 || forSum[sum] > 1) {
        ans++;
 
        // New sum
        sum = arr[i];
 
        // Clearing previous data
        forSum.Clear();
 
        // Storing new sum
        forSum.Add(sum, 1);
      }
    }
    return ans;
  }
 
  // Driver Code
  public static void Main()
  {
    int N = 3;
    int[] arr = { 1, -1, 1 };
 
    // Function call
    Console.Write(getElements(N, arr));
  }
}
 
// This code is contributed by code_hunt.


Javascript




<script>
        // JavaScript code for the above approach
 
// Function to find the minimum count
// of required insertions
function getElements(N, arr)
{
    // To store the previous sums
    var forSum = new Map();
   //let  forSum= new Array();
 
    // Final answer
    let ans = 0;
 
    // To store current sum
    let sum = 0;
 
    // Traversing array
    for (let i = 0; i < N; i++) {
 
        // Adding elements
        sum += arr[i];
 
        // Storing occurrence
        forSum[sum]++;
 
        // If found any subarray with sum 0
        if (sum == 0 || forSum[sum] > 1) {
            ans++;
 
            // New sum
            sum = arr[i];
 
            // Clearing previous data
            forSum.clear();
 
            // Storing new sum
            forSum[sum]++;
        }
    }
    return ans;
}
 
        // Driver Code
 
    let N = 3;
    let arr = [ 1, -1, 1 ];
 
    // Function call
    document.write(getElements(N, arr));
         
        // This code is contributed by sanjoy_62.
    </script>


Output

2

Time Complexity: O(N) because the array is traversed only once and at most N elements are cleared from the map.
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments