Sunday, January 12, 2025
Google search engine
HomeData Modelling & AIMinimum divisor of a number to make the number perfect cube

Minimum divisor of a number to make the number perfect cube

Given a positive integer N, the task is to find the minimum divisor by which it shall be divided to make it a perfect cube. If N is already a perfect cube, then print 1.
Examples: 

Input : N = 128
Output : 2
By Dividing N by 2, we get 64 which is a perfect cube.

Input : n = 6
Output : 6
By Dividing N by 6, we get 1 which is a perfect cube.

Input : n = 64
Output : 1

Any number is a perfect cube if all prime factors of it appear in multiples of 3, as you can see in the below figure.  

Therefore, the idea is to find the prime factorization of N and find power of each prime factor. Now, find and multiply all the prime factors whose power is not divisible by 3 as primeFactor*power%3. The resultant of the multiplication is the answer.
Below is the implementation of the above approach:  

C++




// C++ program to find minimum number which divide n
// to make it a perfect cube
#include <bits/stdc++.h>
using namespace std;
 
// Returns the minimum divisor
int findMinNumber(int n)
{
    int count = 0, ans = 1;
 
    // Since 2 is only even prime, compute its
    // power separately.
    while (n % 2 == 0) {
        count++;
        n /= 2;
    }
 
    // If count is not divisible by 3,
    // it must be removed by dividing
    // n by prime number power.
    if (count % 3 != 0)
        ans *= pow(2, (count % 3));
 
    for (int i = 3; i <= sqrt(n); i += 2) {
        count = 0;
        while (n % i == 0) {
            count++;
            n /= i;
        }
 
        // If count is not divisible by 3,
        // it must be removed by dividing
        // n by prime number power.
        if (count % 3 != 0)
            ans *= pow(i, (count % 3));
    }
 
    // if n is a prime number
    if (n > 2)
        ans *= n;
 
    return ans;
}
 
// Driven Program
int main()
{
    int n = 128;
    cout << findMinNumber(n) << endl;
    return 0;
}


Java




// Java program to find minimum number which divide n
// to make it a perfect cube
import java.io.*;
public class GFG{
  
// Returns the minimum divisor
static int findMinNumber(int n)
{
    int count = 0, ans = 1;
  
    // Since 2 is only even prime, compute its
    // power separately.
    while (n % 2 == 0) {
        count++;
        n /= 2;
    }
  
    // If count is not divisible by 3,
    // it must be removed by dividing
    // n by prime number power.
    if (count % 3 != 0)
        ans *= Math.pow(2, (count % 3));
  
    for (int i = 3; i <= Math.sqrt(n); i += 2) {
        count = 0;
        while (n % i == 0) {
            count++;
            n /= i;
        }
  
        // If count is not divisible by 3,
        // it must be removed by dividing
        // n by prime number power.
        if (count % 3 != 0)
            ans *= Math.pow(i, (count % 3));
    }
  
    // if n is a prime number
    if (n > 2)
        ans *= n;
  
    return ans;
}
  
// Driver code
public static void main(String[] args)
{
    int n = 128;
    System.out.print(findMinNumber(n) +"\n");
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 program to find minimum number which divide n
# to make it a perfect cube
 
# Returns the minimum divisor
def findMinNumber(n):
    count = 0;
    ans = 1;
 
    # Since 2 is only even prime, compute its
    # power separately.
    while (n % 2 == 0):
        count+=1;
        n /= 2;
     
    # If count is not divisible by 3,
    # it must be removed by dividing
    # n by prime number power.
    if (count % 3 != 0):
        ans *= pow(2, (count % 3));
 
    for i in range(3, int(pow(n, 1/2)), 2):
        count = 0;
        while (n % i == 0):
            count += 1;
            n /= i;
         
        # If count is not divisible by 3,
        # it must be removed by dividing
        # n by prime number power.
        if (count % 3 != 0):
            ans *= pow(i, (count % 3));
     
    # if n is a prime number
    if (n > 2):
        ans *= n;
 
    return ans;
 
# Driver code
if __name__ == '__main__':
    n = 128;
    print(findMinNumber(n));
 
# This code is contributed by 29AjayKumar


C#




// C# program to find minimum number which divide n
// to make it a perfect cube
using System;
 
class GFG{
   
// Returns the minimum divisor
static int findMinNumber(int n)
{
    int count = 0, ans = 1;
   
    // Since 2 is only even prime, compute its
    // power separately.
    while (n % 2 == 0) {
        count++;
        n /= 2;
    }
   
    // If count is not divisible by 3,
    // it must be removed by dividing
    // n by prime number power.
    if (count % 3 != 0)
        ans *= (int)Math.Pow(2, (count % 3));
   
    for (int i = 3; i <= Math.Sqrt(n); i += 2) {
        count = 0;
        while (n % i == 0) {
            count++;
            n /= i;
        }
   
        // If count is not divisible by 3,
        // it must be removed by dividing
        // n by prime number power.
        if (count % 3 != 0)
            ans *= (int)Math.Pow(i, (count % 3));
    }
   
    // if n is a prime number
    if (n > 2)
        ans *= n;
   
    return ans;
}
   
// Driver code
public static void Main(String[] args)
{
    int n = 128;
    Console.Write(findMinNumber(n) +"\n");
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript program to find minimum number which divide n
// to make it a perfect cube
 
// Returns the minimum divisor
function findMinNumber(n)
{
    var count = 0, ans = 1;
 
    // Since 2 is only even prime, compute its
    // power separately.
    while (n % 2 == 0) {
        count++;
        n /= 2;
    }
 
    // If count is not divisible by 3,
    // it must be removed by dividing
    // n by prime number power.
    if (count % 3 != 0)
        ans *= Math.pow(2, (count % 3));
 
    for (var i = 3; i <= Math.sqrt(n); i += 2) {
        count = 0;
        while (n % i == 0) {
            count++;
            n /= i;
        }
 
        // If count is not divisible by 3,
        // it must be removed by dividing
        // n by prime number power.
        if (count % 3 != 0)
            ans *= Math.pow(i, (count % 3));
    }
 
    // if n is a prime number
    if (n > 2)
        ans *= n;
 
    return ans;
}
 
// Driven Program
var n = 128;
document.write(findMinNumber(n));
 
// This code is contributed by rutvik_56.
</script>


Output: 

2

 

Time Complexity: O(sqrt(n))
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments