Friday, January 10, 2025
Google search engine
HomeData Modelling & AIMinimum difference between components of the Graph after each query

Minimum difference between components of the Graph after each query

Given an integer N, denoting the total number of Nodes in a graph without any edges, you have to process Q queries of the form u, v which denotes that you have to add an edge between node u and v. After each query you have to print the minimum difference possible between the size any two components of the graph. If there is only one component simply print 0.

Examples:

Input: N = 2, Q = 1, queries = [[1 2]]
Output: 0
Explanation: 

  • Initial components = {{1}{2}}
  • After query[0]:
    • we have components = {{1 2}}, Since we have only one component, simply print 0.

Input: N = 4, Q = 2, queries = [[1 2], [2 4]]
Output: [0, 2]
Explanation: 

  • Initial components = {{1}, {2}, {3}, {4}}
  • After query[0]:
    • we have components={{1 2}, {3}, {4}}
    • So minimum difference = size of {3} – size of {4} = 1-1 = 0.
  • After query[1]:
    • We have components={{1 2 4},{3}}
    • So minimum difference = size of {1 2 4} – size of {3} = 3 – 1 = 2.

Efficient Approach: We can use Disjoint-Set_Union(DSU) and Set data structure to solve this question optimally as discussed below.

For each query of creating an edge between node ‘u’ and ‘v’ , we can use Union operation of DSU to merge both the nodes into a same component. Also we can use a set to remove older sizes of the component and insert new sizes efficiently . This set will provide a sorted information about the sizes of each component existing in the graph.

Answer for each query can be obtained by 2 cases.

Case 1: If any element of the set has a frequency > 1

  • Simply print 0, as we have 2 component of same size.

Case 2: If all the element in the set has frequency<=1

  • Print the minimum among all the differences between adjacent elements in the sorted-set while iterating.

Follow the below steps to solve the problem:

  • Create a set ‘st‘ and frequency array ‘freq‘ to store the information about the sizes of the component existing in the graph
  • For each query merge the nodes ‘u‘ and ‘v‘ using the Union operation of DSU.
  • Update the ‘st’ and ‘freq’, by deleting the older component sizes and inserting the new component sizes.
  • Iterate the elements of the set and find the answer ‘ans‘ by the following comparison:
    • If freq[element]>1 : ans=0 , break out of the iteration
    • Else ans = minimum of all the differences between the consecutive elements of set iteration.

Below is the implementation of the above algorithm:

C++




// Below is the C++ code for above approach
 
#include <bits/stdc++.h>
#define ll long long
using namespace std;
 
// parent array to store the parent of each
// component of the graph
ll parent[100010];
 
// Array used to apply DSU by size in order
// to fasten the DSU functions
ll sizez[100010];
 
// Frequency array to optimize the find the
// frequency of size of components in the graph
ll freq[100010];
 
// set to store different sizes of the component
set<ll> st;
 
// This function is used to initialize our DSU
// data structure
void make(ll i)
{
    parent[i] = i;
    sizez[i] = 1;
    freq[1]++;
}
 
// This function is used to find the parent of
// each component of the graph
ll find(ll v)
{
    if (v == parent[v])
        return v;
 
    // Path compression
    // technique of DSU
    return parent[v] = find(parent[v]);
}
 
// This function is used to Merge two components
// together it also updates our frequency array
// and set with new sizes and removes older sizes
void Union(ll a, ll b)
{
    a = find(a);
    b = find(b);
    if (a != b) {
        if (sizez[a] < sizez[b])
            swap(a, b);
 
        // Decreasing the frequency of older size
        freq[sizez[a]]--;
 
        // Removing the older size if frequency
        // reaches to 0
        if (freq[sizez[a]] == 0)
            st.erase(st.find(sizez[a]));
 
        // Decreasing the frequency of older size
        freq[sizez[b]]--;
 
        // Removing the older size if frequency
        // reaches to 0
        if (freq[sizez[b]] == 0)
            st.erase(st.find(sizez[b]));
        parent[b] = a;
        sizez[a] += sizez[b];
 
        // Incrementing the frequency of new size
        freq[sizez[a]]++;
 
        // Inserting the new size in the set
        if (freq[sizez[a]] == 1)
            st.insert(sizez[a]);
    }
}
 
// Driver Function
int main()
{
    ll N, Q;
    N = 4;
    Q = 2;
    vector<vector<int> > queries = { { 1, 2 }, { 2, 4 } };
 
    // Initial component size is 1
    st.insert(1);
 
    // Initialize our DSU
    for (int i = 1; i <= N; i++) {
        make(i);
    }
    for (int i = 0; i < Q; i++) {
        ll u = queries[i][0];
        ll v = queries[i][1];
        Union(u, v);
        ll ans = INT_MAX;
        ll pre = INT_MIN;
 
        // Finding the minimum difference between
        // adjacent element of sorted set
        for (auto e : st) {
 
            // If any element has frequency greater
            // than 1, answer will be 0
            if (freq[e] > 1) {
                ans = 0;
                break;
            }
            ans = min(ans, e - pre);
            pre = e;
        }
        if (ans == INT_MAX)
            ans = 0;
        cout << ans << endl;
    }
}


Java




// Below is the Java code for above approach
import java.util.*;
 
public class Main {
 
  // parent array to store the parent of each
// component of the graph
    static int[] parent;
   
  // Array used to apply DSU by size in order
// to fasten the DSU functions
    static int[] sizez;
   
 // Frequency array to optimize the find the
// frequency of size of components in the graph
    static int[] freq;
   
  // set to store different sizes of the component
    static TreeSet<Integer> st;
 
 // This function is used to initialize our DSU
// data structure
    static void make(int i) {
        parent[i] = i;
        sizez[i] = 1;
        freq[1]++;
    }
 
 // This function is used to find the parent of
// each component of the graph
    static int find(int v) {
        if (v == parent[v])
            return v;
 
       // Path compression
      // technique of DSU
        return parent[v] = find(parent[v]);
    }
 
 // This function is used to Merge two components
// together it also updates our frequency array
// and set with new sizes and removes older sizes
    static void Union(int a, int b) {
        a = find(a);
        b = find(b);
        if (a != b) {
            if (sizez[a] < sizez[b]) {
                int temp = a;
                a = b;
                b = temp;
            }
           
            // Decreasing the frequency of older size
            freq[sizez[a]]--;
            if (freq[sizez[a]] == 0)
                st.remove(sizez[a]);
 
          // Removing the older size if frequency
         // reaches to 0
            freq[sizez[b]]--;
            if (freq[sizez[b]] == 0)
                st.remove(sizez[b]);
     
            parent[b] = a;
            sizez[a] += sizez[b];
           
          // Incrementing the frequency of new size
            freq[sizez[a]]++;
 
           // Inserting the new size in the set
            if (freq[sizez[a]] == 1)
                st.add(sizez[a]);
        }
    }
 
  // Driver code
    public static void main(String[] args) {
      // input
        int N = 4;
        int Q = 2;
        int[][] queries = { { 1, 2 }, { 2, 4 } };
 
        // Initial component size is 1
        st = new TreeSet<>();
        st.add(1);
 
        parent = new int[N + 1];
        sizez = new int[N + 1];
        freq = new int[N + 1];
 
       // Initialize our DSU
        for (int i = 1; i <= N; i++) {
            make(i);
        }
 
      // Finding the minimum difference between
        // adjacent element of sorted set
        for (int i = 0; i < Q; i++) {
            int u = queries[i][0];
            int v = queries[i][1];
            Union(u, v);
            int ans = Integer.MAX_VALUE;
            int pre = Integer.MIN_VALUE;
 
            for (int e : st) {
               // If any element has frequency greater
            // than 1, answer will be 0
                if (freq[e] > 1) {
                    ans = 0;
                    break;
                }
                if (pre != Integer.MIN_VALUE) {
                    ans = Math.min(ans, e - pre);
                }
                pre = e;
            }
 
            System.out.println(ans);
        }
    }
}


Python3




# Below is the Python code for above approach
 
# Initialize parent array to store the parent of each
# component of the graph
parent = [0] * 100010
 
# Array used to apply DSU by size in order
# to fasten the DSU functions
sizez = [0] * 100010
 
# Frequency array to optimize finding the
# frequency of component sizes in the graph
freq = [0] * 100010
 
# Set to store different sizes of the components
st = set()
 
# This function initializes the DSU
# data structure
def make(i):
    parent[i] = i
    sizez[i] = 1
    freq[1] += 1
 
# This function finds the parent of each
# component in the graph using path compression
def find(v):
    if v == parent[v]:
        return v
    parent[v] = find(parent[v])
    return parent[v]
 
# This function is used to Merge two components
# together it also updates our frequency array
# and set with new sizes and removes older sizes
def Union(a, b):
    a = find(a)
    b = find(b)
    if a != b:
        if sizez[a] < sizez[b]:
            a, b = b, a
         
        # Decrease the frequency of older size
        freq[sizez[a]] -= 1
 
        # Remove the older size if frequency reaches 0
        if freq[sizez[a]] == 0:
            st.remove(sizez[a])
 
        # Decrease the frequency of older size
        freq[sizez[b]] -= 1
 
        # Remove the older size if frequency reaches 0
        if freq[sizez[b]] == 0:
            st.remove(sizez[b])
         
        parent[b] = a
        sizez[a] += sizez[b]
 
        # Increment the frequency of new size
        freq[sizez[a]] += 1
 
        # Insert the new size into the set
        if freq[sizez[a]] == 1:
            st.add(sizez[a])
 
# Driver Code
N, Q = 4, 2
queries = [[1, 2], [2, 4]]
 
# Initial component size is 1
st.add(1)
 
# Initialize our DSU
for i in range(1, N + 1):
    make(i)
 
for i in range(Q):
    u, v = queries[i]
    Union(u, v)
    ans = float('inf')
    pre = float('-inf')
 
    # Finding the minimum difference between
    # adjacent elements of the sorted set
    for e in sorted(st):
        # If any element has frequency greater
        # than 1, the answer will be 0
        if freq[e] > 1:
            ans = 0
            break
        ans = min(ans, e - pre)
        pre = e
     
    if ans == float('inf'):
        ans = 0
    print(ans)
# This code is contributed by Prasad


C#




using System;
using System.Collections.Generic;
 
class MainClass
{
    // parent array to store the parent of each
    // component of the graph
    static long[] parent = new long[100010];
 
    // Array used to apply DSU by size in order
    // to fasten the DSU functions
    static long[] sizez = new long[100010];
 
    // Frequency array to optimize the find the
    // frequency of size of components in the graph
    static long[] freq = new long[100010];
 
    // set to store different sizes of the component
    static SortedSet<long> st = new SortedSet<long>();
 
    // This function is used to initialize our DSU
    // data structure
    static void make(long i)
    {
        parent[i] = i;
        sizez[i] = 1;
        freq[1]++;
    }
 
    // This function is used to find the parent of
    // each component of the graph
    static long find(long v)
    {
        if (v == parent[v])
            return v;
 
        // Path compression
        // technique of DSU
        return parent[v] = find(parent[v]);
    }
 
    // This function is used to Merge two components
    // together it also updates our frequency array
    // and set with new sizes and removes older sizes
    static void Union(long a, long b)
    {
        a = find(a);
        b = find(b);
        if (a != b)
        {
            if (sizez[a] < sizez[b])
                (a, b) = (b, a);
 
            // Decreasing the frequency of older size
            freq[sizez[a]]--;
 
            // Removing the older size if frequency
            // reaches to 0
            if (freq[sizez[a]] == 0)
                st.Remove(sizez[a]);
 
            // Decreasing the frequency of older size
            freq[sizez[b]]--;
 
            // Removing the older size if frequency
            // reaches to 0
            if (freq[sizez[b]] == 0)
                st.Remove(sizez[b]);
 
            parent[b] = a;
            sizez[a] += sizez[b];
 
            // Incrementing the frequency of new size
            freq[sizez[a]]++;
 
            // Inserting the new size in the set
            if (freq[sizez[a]] == 1)
                st.Add(sizez[a]);
        }
    }
 
    // Driver Function
    public static void Main(string[] args)
    {
        long N, Q;
        N = 4;
        Q = 2;
        List<List<long>> queries = new List<List<long>> { new List<long> { 1, 2 }, new List<long> { 2, 4 } };
 
        // Initial component size is 1
        st.Add(1);
 
        // Initialize our DSU
        for (int i = 1; i <= N; i++)
        {
            make(i);
        }
        for (int i = 0; i < Q; i++)
        {
            long u = queries[i][0];
            long v = queries[i][1];
            Union(u, v);
            long ans = int.MaxValue;
            long pre = int.MinValue;
 
            // Finding the minimum difference between
            // adjacent element of sorted set
            foreach (var e in st)
            {
 
                // If any element has frequency greater
                // than 1, answer will be 0
                if (freq[e] > 1)
                {
                    ans = 0;
                    break;
                }
                ans = Math.Min(ans, e - pre);
                pre = e;
            }
            if (ans == int.MaxValue)
                ans = 0;
            Console.WriteLine(ans);
        }
    }
}


Javascript




// Initialize parent array to store the parent of each 
// component of the graph
const parent = [];
for (let i = 0; i < 100010; i++) {
  parent[i] = i;
}
 
// Array used to apply DSU by size in order
// to fasten the DSU functions
const sizez = [];
for (let i = 0; i < 100010; i++) {
  sizez[i] = 1;
}
 
// Frequency array to optimize finding the 
// frequency of component sizes in the graph
const freq = [];
for (let i = 0; i < 100010; i++) {
  freq[i] = 0;
}
 
// Set to store different sizes of the components
const st = new Set();
 
// This function initializes the DSU 
// data structure
function make(i) {
  parent[i] = i;
  sizez[i] = 1;
  freq[1] += 1;
}
 
// This function finds the parent of each 
// component in the graph using path compression
function find(v) {
  if (v === parent[v]) {
    return v;
  }
 
  parent[v] = find(parent[v]);
  return parent[v];
}
 
// This function is used to Merge two components
// together it also updates our frequency array
// and set with new sizes and removes older sizes
function Union(a, b) {
  a = find(a);
  b = find(b);
 
  if (a !== b) {
    if (sizez[a] < sizez[b]) {
      a = b;
    }
 
    // Decrease the frequency of older size
    freq[sizez[a]] -= 1;
 
    // Remove the older size if frequency reaches 0
    if (freq[sizez[a]] === 0) {
      st.delete(sizez[a]);
    }
 
    // Decrease the frequency of older size
    freq[sizez[b]] -= 1;
 
    // Remove the older size if frequency reaches 0
    if (freq[sizez[b]] === 0) {
      st.delete(sizez[b]);
    }
 
    parent[b] = a;
    sizez[a] += sizez[b];
 
    // Increment the frequency of new size
    freq[sizez[a]] += 1;
 
    // Insert the new size into the set
    if (freq[sizez[a]] === 1) {
      st.add(sizez[a]);
    }
  }
}
 
// Driver Code
const N = 4;
const Q = 2;
const queries = [[1, 2], [2, 4]];
 
// Initial component size is 1
st.add(1);
 
// Initialize our DSU
for (let i = 1; i <= N; i++) {
  make(i);
}
 
for (let i = 0; i < Q; i++) {
  const [u, v] = queries[i];
  Union(u, v);
 
  let ans = Infinity;
  let pre = -Infinity;
 
  // Finding the minimum difference between 
  // adjacent elements of the sorted set
  for (const e of st.values()) {
    // If any element has frequency greater 
    // than 1, the answer will be 0
    if (freq[e] > 1) {
      ans = 0;
      break;
    }
 
    ans = Math.min(ans, e - pre);
    pre = e;
  }
 
  if (ans === Infinity) {
    ans = 0;
  }
 
  console.log(ans);
}


Output

0
2







Time Complexity: O(Q * Sqrt(N)), where Q is the number of queries and N is the total number of nodes.
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
17 Oct, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments