Sunday, January 12, 2025
Google search engine
HomeLanguagesDynamic ProgrammingMinimum days required to cure N persons

Minimum days required to cure N persons

Given an array arr[], representing the ages of N persons in a hospital and there is only one doctor who can give an immune dose to at most P persons per day, the task is to find the minimum count of days required to give the cure such that a high risk person and a normal person does not get a dose on the same day. 
Note: Any person with age ≤ 10 or ≥ 60 is contemplated as a high risk person.

Examples:

Input: arr[] = {9, 80, 27, 72, 79}, P = 2
Output: 3
Explanation:
There are 4 high risk persons. Therefore, on days 1 and 2, 2 high risk persons can be immuned. On the last day, the normal person can be immuned. Therefore, 3 days are required.

 

Approach: Follow the steps below to solve the problem:

  1. Initialize a variable, say risk, to store the count of persons whose age is less than or equal to 10 and greater than or equal to 60.
  2. Initialize a variable, say normal_risk, to store the count of persons whose age is in the range [11, 59]
  3. Traverse the array and check if the age is less than or equal to 10 or greater than or equal to 60 or not. If found to be true, then increment the value of risk.
  4. Otherwise, increment the value of normal_risk.
  5. Finally, print the value of ceil(risk / P) + ceil(normal_risk / P)

Below is the implementation of the above approach:

C++




// C++ Program for the above approach
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to find minimum count of days required
// to give a cure such that the high risk person
// and risk person does not get a dose on same day.
void daysToCure(int arr[], int N, int P)
{
  
    // Stores count of persons whose age is
    // less than or equal to 10 and
    // greater than or equal to 60.
    int risk = 0;
  
    // Stores the count of persons
    // whose age is in the range [11, 59]
    int normal_risk = 0;
  
    // Traverse the array arr[]
    for (int i = 0; i < N; i++) {
  
        // If age less than or equal to 10
        // or greater than or equal to 60
        if (arr[i] >= 60 || arr[i] <= 10) {
  
            // Update risk
            risk++;
        }
        else {
  
            // Update normal_risk
            normal_risk++;
        }
    }
  
    // Calculate days to cure risk
    // and normal_risk persons
    int days = (risk / P) + (risk % P > 0)
               + (normal_risk / P)
               + (normal_risk % P > 0);
  
    // Print the days
    cout << days;
}
  
// Driver Code
int main()
{
    // Given array
    int arr[] = { 9, 80, 27, 72, 79 };
  
    // Size of the array
    int N = sizeof(arr) / sizeof(arr[0]);
  
    // Given P
    int P = 2;
  
    daysToCure(arr, N, P);
  
    return 0;
}


Java




// Java Program for the above approach 
class GFG
{
  // Function to find minimum count of days required 
  // to give a cure such that the high risk person 
  // and risk person does not get a dose on same day. 
  static void daysToCure(int arr[], int N, int P) 
  
   
    // Stores count of persons whose age is 
    // less than or equal to 10 and 
    // greater than or equal to 60. 
    int risk = 0
   
    // Stores the count of persons 
    // whose age is in the range [11, 59] 
    int normal_risk = 0
   
    // Traverse the array arr[] 
    for (int i = 0; i < N; i++) 
    
   
      // If age less than or equal to 10 
      // or greater than or equal to 60 
      if (arr[i] >= 60 || arr[i] <= 10)
      
   
        // Update risk 
        risk++; 
      
      else
      
   
        // Update normal_risk 
        normal_risk++; 
      
    
   
    // Calculate days to cure risk 
    // and normal_risk persons 
    int days = (risk / P) +  (normal_risk / P);
   
    if(risk % P > 0)
    {
      days++;
    }
   
    if(normal_risk % P > 0)
    {
      days++;
    }
   
    // Print the days 
    System.out.print(days); 
  }  
  
    public static void main(String[] args) {
        // Given array 
        int arr[] = { 9, 80, 27, 72, 79 }; 
       
        // Size of the array 
        int N = arr.length; 
       
        // Given P 
        int P = 2;   
        daysToCure(arr, N, P);
    }
}
  
// This code is contributed by divyeshrabadiya07


Python3




# Python3 Program for the above approach
  
# Function to find minimum count of days required
# to give a cure such that the high risk person
# and risk person does not get a dose on same day.
def daysToCure(arr, N, P):
  
    # Stores count of persons whose age is
    # less than or equal to 10 and
    # greater than or equal to 60.
    risk = 0
  
    # Stores the count of persons
    # whose age is in the range [11, 59]
    normal_risk = 0
  
    # Traverse the array arr[]
    for i in range(N):
  
        # If age less than or equal to 10
        # or greater than or equal to 60
        if (arr[i] >= 60 or arr[i] <= 10):
  
            # Update risk
            risk += 1
        else:
  
            # Update normal_risk
            normal_risk += 1
  
    # Calculate days to cure risk
    # and normal_risk persons
    days = (risk // P) + (risk % P > 0) + (normal_risk // P) + (normal_risk % P > 0)
  
    # Print the days
    print (days)
  
# Driver Code
if __name__ == '__main__':
    
    # Given array
    arr = [9, 80, 27, 72, 79 ]
  
    # Size of the array
    N = len(arr)
  
    # Given P
    P = 2
  
    daysToCure(arr, N, P)
  
    # This code is contributed by mohit kumar 29.


C#




// C# Program for the above approach 
using System;
class GFG 
{
  
  // Function to find minimum count of days required 
  // to give a cure such that the high risk person 
  // and risk person does not get a dose on same day. 
  static void daysToCure(int[] arr, int N, int P) 
  
  
    // Stores count of persons whose age is 
    // less than or equal to 10 and 
    // greater than or equal to 60. 
    int risk = 0; 
  
    // Stores the count of persons 
    // whose age is in the range [11, 59] 
    int normal_risk = 0; 
  
    // Traverse the array arr[] 
    for (int i = 0; i < N; i++) 
    
  
      // If age less than or equal to 10 
      // or greater than or equal to 60 
      if (arr[i] >= 60 || arr[i] <= 10)
      
  
        // Update risk 
        risk++; 
      
      else 
      
  
        // Update normal_risk 
        normal_risk++; 
      
    
  
    // Calculate days to cure risk 
    // and normal_risk persons 
    int days = (risk / P) +  (normal_risk / P);
  
    if(risk % P > 0)
    {
      days++;
    }
  
    if(normal_risk % P > 0)
    {
      days++;
    }
  
    // Print the days 
    Console.Write(days); 
  
  
  // Driver code
  static void Main() 
  {
  
    // Given array 
    int[] arr = { 9, 80, 27, 72, 79 }; 
  
    // Size of the array 
    int N = arr.Length; 
  
    // Given P 
    int P = 2;   
    daysToCure(arr, N, P);
  }
}
  
// This code is contributed by divyesh072019.


Javascript




<script>
// javascript Program for the above approach 
  
    // Function to find minimum count of days required
    // to give a cure such that the high risk person
    // and risk person does not get a dose on same day.
    function daysToCure(arr , N , P) {
  
        // Stores count of persons whose age is
        // less than or equal to 10 and
        // greater than or equal to 60.
        var risk = 0;
  
        // Stores the count of persons
        // whose age is in the range [11, 59]
        var normal_risk = 0;
  
        // Traverse the array arr
        for (i = 0; i < N; i++) {
  
            // If age less than or equal to 10
            // or greater than or equal to 60
            if (arr[i] >= 60 || arr[i] <= 10) {
  
                // Update risk
                risk++;
            } else {
  
                // Update normal_risk
                normal_risk++;
            }
        }
  
        // Calculate days to cure risk
        // and normal_risk persons
        var days = parseInt((risk / P) + (normal_risk / P));
  
        if (risk % P > 0) {
            days++;
        }
  
        if (normal_risk % P > 0) {
            days++;
        }
  
        // Print the days
        document.write(days);
    }
  
      
        // Given array
        var arr = [ 9, 80, 27, 72, 79 ];
  
        // Size of the array
        var N = arr.length;
  
        // Given P
        var P = 2;
        daysToCure(arr, N, P);
  
// This code contributed by Rajput-Ji 
  
</script>


Output

3

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments