Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIMinimum cost to convert the given String into Palindrome

Minimum cost to convert the given String into Palindrome

Given a string S of length N and 2 integers X and Y, the task is to find the minimum cost of converting the string to a palindrome by performing the following operations any number of times in any order:

  • Move the leftmost character to the rightmost end of the string at cost X. i.e S1S2…SN gets converted into S2S3…SNS1.
  • Replace any character of the string with any lowercase letter at cost Y.

Examples:

Input: N = 5, S = “rrefa”, X = 1, Y = 2
Output: 3
Explanation: First pay Y = 2 amount and replace S5 (i.e. ‘a’) with ‘e’. Now the string becomes “rrefe”. Now pay X = 1 amount to rotate the string once. Now the string becomes “refer”  which is a palindrome. The total cost to achieve the same is 2 + 1 = 3.

Input: N = 8, S = “bcdfcgaa”, X = 1000000000, Y = 1000000000
Output: 4000000000

Approach: This can be solved by the following idea:

It does not matter whether we replace a character before or after we move it. So, we will perform all the operation 1s before operation 2s for the sake of simplicity. We will fix how many times we will perform operation 1. Note that after N rotations the string becomes equal to the initial string. So, N-1 rotations are sufficient to arrive at the answer. Then, for each of the first N/2 characters we will check whether it matches with (N – i + 1)th character 
(say its palindromic pair). If not, we have to pay cost Y to change any one of them.

The following steps can be used to solve the problem :

  • Initialize a variable (say answer) to store the final answer.
  • Iterate from i = 0 to N – 1, i.e. fix the number of rotations of the string (operation 1).
  • Initialize a variable (say count) by 0 to store the number of operations 2 to be performed.
  • Iterate from j = 0 to N – 1 (in the nested loop) to check how many characters of the string are not equal to their palindromic pair.
  • If any character is not equal to its palindromic pair, increment the count.
  • Calculate the cost of converting the string into palindrome for the current ‘i’.
  • The minimum of all costs for each iteration would be the final answer.

Following is the code based on the above approach:

C++




// C++ code for the above approach
#include <bits/stdc++.h>
using namespace std;
#define int long long
 
// Function to find minimum cost to convert
// the given string into palindrome by
// performing the given operations
int minCost(string S, int N, int X, int Y)
{
    // Initializing a variable to store
    // the final answer
    int answer = 1e16;
 
    // Iterating from i=0 to N-1, i.e.
    // fixing the rotations of the
    // string (operation 1)
    for (int i = 0; i < N; i++) {
        // Variable to store the number
        // of operations 2 to be performed
        int count = 0;
 
        // Iterating from j=0 to N-1 to
        // check how many characters of
        // the string are not equal to
        // their palindromic pair
        for (int j = 0; j < N; j++) {
 
            // If any character of the
            // string is not equal to its
            // palindromic pair,
            // increment count
            if (S[(j + i) % N] != S[(N - 1 - j + i) % N]) {
 
                count++;
            }
        }
 
        // Cost to convert the string S to
        // palindrome when  'i' rotations
        // are performed
        int cost = X * i + Y * (count / 2);
 
        // Minimum of all these costs would
        // be the final answer
        answer = min(answer, cost);
    }
 
    // Returning answer
    return answer;
}
 
// Driver code
int32_t main()
{
    int N = 5, X = 1, Y = 2;
    string S = "rrefa";
 
    // Function call
    int answer = minCost(S, N, X, Y);
    cout << answer;
    return 0;
}


Java




import java.util.*;
 
public class Main {
    static long minCost(String S, int N, long X, long Y) {
        // Initializing a variable to store
        // the final answer
        long answer = Long.MAX_VALUE;
 
        // Iterating from i=0 to N-1, i.e.
        // fixing the rotations of the
        // string (operation 1)
        for (int i = 0; i < N; i++) {
            // Variable to store the number
            // of operations 2 to be performed
            int count = 0;
 
            // Iterating from j=0 to N-1 to
            // check how many characters of
            // the string are not equal to
            // their palindromic pair
            for (int j = 0; j < N; j++) {
                // If any character of the
                // string is not equal to its
                // palindromic pair,
                // increment count
                if (S.charAt((j + i) % N) != S.charAt((N - 1 - j + i) % N)) {
                    count++;
                }
            }
 
            // Cost to convert the string S to
            // palindrome when  'i' rotations
            // are performed
            long cost = X * i + Y * (count / 2);
 
            // Minimum of all these costs would
            // be the final answer
            answer = Math.min(answer, cost);
        }
 
        // Returning answer
        return answer;
    }
 
    // Driver code
    public static void main(String[] args) {
        int N = 5;
        long X = 1, Y = 2;
        String S = "rrefa";
 
        // Function call
        long answer = minCost(S, N, X, Y);
        System.out.println(answer);
    }
}


Python3




# Python code implementation:
 
def minCost(S, N, X, Y):
    # Initializing a variable to store
    # the final answer
    answer = float('inf')
 
    # Iterating from i=0 to N-1, i.e.
    # fixing the rotations of the
    # string (operation 1)
    for i in range(N):
        # Variable to store the number
        # of operations 2 to be performed
        count = 0
 
        # Iterating from j=0 to N-1 to
        # check how many characters of
        # the string are not equal to
        # their palindromic pair
        for j in range(N):
            # If any character of the
            # string is not equal to its
            # palindromic pair,
            # increment count
            if S[(j + i) % N] != S[(N - 1 - j + i) % N]:
                count += 1
 
        # Cost to convert the string S to
        # palindrome when  'i' rotations
        # are performed
        cost = X * i + Y * (count // 2)
 
        # Minimum of all these costs would
        # be the final answer
        answer = min(answer, cost)
 
    # Returning answer
    return answer
 
# Driver code
N = 5
X = 1
Y = 2
S = "rrefa"
 
# Function call
answer = minCost(S, N, X, Y)
print(answer)
 
# This code is contributed by sankar.


C#




// C# code implemetation
 
using System;
 
public class GFG {
 
    static long minCost(string S, int N, long X, long Y)
    {
        // Initializing a variable to store the final answer
        long answer = long.MaxValue;
 
        // Iterating from i=0 to N-1, i.e. fixing the
        // rotations of the string (operation 1)
        for (int i = 0; i < N; i++) {
            // Variable to store the number of operations 2
            // to be performed
            int count = 0;
 
            // Iterating from j=0 to N-1 to check how many
            // characters of the string are not equal to
            // their palindromic pair
            for (int j = 0; j < N; j++) {
                // If any character of the string is not
                // equal to its palindromic pair, increment
                // count
                if (S[(j + i) % N]
                    != S[(N - 1 - j + i) % N]) {
                    count++;
                }
            }
 
            // Cost to convert the string S to palindrome
            // when  'i' rotations are performed
            long cost = X * i + Y * (count / 2);
 
            // Minimum of all these costs would be the final
            // answer
            answer = Math.Min(answer, cost);
        }
 
        // Returning answer
        return answer;
    }
 
    static public void Main()
    {
 
        // Code
        int N = 5;
        long X = 1, Y = 2;
        string S = "rrefa";
 
        // Function call
        long answer = minCost(S, N, X, Y);
        Console.WriteLine(answer);
    }
}
 
// This code is contributed by karthik


Javascript




// Javascript code for the above approach
function minCost(S, N, X, Y) {
    // Initializing a variable to store
    // the final answer
    let answer = 1e16;
 
    // Iterating from i=0 to N-1, i.e.
    // fixing the rotations of the
    // string (operation 1)
    for (let i = 0; i < N; i++) {
        // Variable to store the number
        // of operations 2 to be performed
        let count = 0;
 
        // Iterating from j=0 to N-1 to
        // check how many characters of
        // the string are not equal to
        // their palindromic pair
        for (let j = 0; j < N; j++) {
            // If any character of the
            // string is not equal to its
            // palindromic pair,
            // increment count
            if (S[(j + i) % N] !== S[(N - 1 - j + i) % N]) {
                count++;
            }
        }
 
        // Cost to convert the string S to
        // palindrome when  'i' rotations
        // are performed
        let cost = X * i + Y * Math.floor(count / 2);
 
        // Minimum of all these costs would
        // be the final answer
        answer = Math.min(answer, cost);
    }
 
    // Returning answer
    return answer;
}
 
// Driver code
let N = 5,
    X = 1,
    Y = 2;
let S = "rrefa";
 
// Function call
let answer = minCost(S, N, X, Y);
console.log(answer);
// This code is contributed by Prajwal Kandekar


Output

3

Time Complexity: O(N*N)
Auxiliary Space: O(1)

New Approach:- Here Another approach to solve this problem is to use dynamic programming. We can define a state dp[i][j] as the minimum cost required to make the substring from i to j a palindrome. We can then use this state to compute the minimum cost required to make the entire string a palindrome.

We can start by initializing all the diagonal elements of the dp matrix to 0, as the minimum cost required to make a single character a palindrome is 0. We can then iterate over all possible substrings of length 2 to N, and compute the minimum cost required to make each substring a palindrome. We can do this by checking if the first and last characters of the substring match, and then adding the cost of either inserting a character or deleting a character based on which operation gives the minimum cost.

The final answer would be the value of dp[0][N-1], which represents the minimum cost required to make the entire string a palindrome.

Algorithm:-

  • Define a function minCost that takes four arguments: S, a string of length N that we want to make a palindrome, N, an integer that represents the length of the string S, X, an integer that represents the cost of deleting a character, and Y, an integer that represents the cost of replacing a character.
  • Initialize a 2D array dp of size N x N with all elements set to zero. This array will store the minimum cost required to make a substring from i to j a palindrome.
  • Set the diagonal elements of the dp matrix to zero. This is because the minimum cost required to make a single character a palindrome is always zero.
  • Iterate over all possible substrings of length 2 to N, and compute the minimum cost required to make each substring a palindrome.
  • To compute the cost of making a substring a palindrome, we first check if the first and last character of the substring are equal. If they are equal, we do not need to perform any operation, and the cost is equal to the cost of making the remaining substring a palindrome. If they are not equal, we need to perform one of three operations: delete the last character and make the substring i to j-1 a palindrome (cost X), delete the first character and make the substring i+1 to j a palindrome (cost X), or replace the last character with the first character and make the substring i+1 to j-1 a palindrome (cost Y).
  • Once we have computed the minimum cost required to make each substring a palindrome, we return the minimum cost required to make the entire string a palindrome, which is stored in the dp[0][N-1] element of the dp matrix.
  • In the driver code, we define the values of N, X, Y, and S, and then call the minCost function with these values. We store the result in the answer variable and then print it.

Following is the code based on the above approach:-

C++




#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
 
int minCost(string S, int N, int X, int Y)
{
    // Initializing a 2D array to store the
    // minimum cost required to make a
    // substring from i to j a palindrome
    int dp[N][N];
 
    // Filling the diagonal elements of the
    // dp matrix with 0, as the minimum cost
    // required to make a single character
    // a palindrome is 0
    for (int i = 0; i < N; i++) {
        dp[i][i] = 0;
    }
 
    // Iterating over all possible substrings
    // of length 2 to N, and computing the
    // minimum cost required to make each
    // substring a palindrome
    for (int L = 2; L <= N; L++) {
        for (int i = 0; i < N - L + 1; i++) {
            int j = i + L - 1;
            if (S[i] == S[j]) {
                dp[i][j] = dp[i + 1][j - 1];
            }
            else {
                dp[i][j] = min(
                    min(dp[i][j - 1] + X, dp[i + 1][j] + X),
                    dp[i + 1][j - 1] + Y);
            }
        }
    }
 
    // Returning the minimum cost required
    // to make the entire string a palindrome
    return dp[0][N - 1];
}
 
// Driver Code
int main()
{
    int N = 5;
    int X = 1;
    int Y = 2;
    string S = "rrefa";
 
    // Function call
    int answer = minCost(S, N, X, Y);
    cout << answer << endl;
 
    return 0;
}


Java




public class Main {
    public static int minCost(String S, int N, int X, int Y)
    {
        // Initializing a 2D array to store the
        // minimum cost required to make a
        // substring from i to j a palindrome
        int[][] dp = new int[N][N];
 
        // Filling the diagonal elements of the
        // dp matrix with 0, as the minimum cost
        // required to make a single character
        // a palindrome is 0
        for (int i = 0; i < N; i++) {
            dp[i][i] = 0;
        }
 
        // Iterating over all possible substrings
        // of length 2 to N, and computing the
        // minimum cost required to make each
        // substring a palindrome
        for (int L = 2; L <= N; L++) {
            for (int i = 0; i < N - L + 1; i++) {
                int j = i + L - 1;
                if (S.charAt(i) == S.charAt(j)) {
                    dp[i][j] = dp[i + 1][j - 1];
                }
                else {
                    dp[i][j] = Math.min(
                        Math.min(dp[i][j - 1] + X,
                                 dp[i + 1][j] + X),
                        dp[i + 1][j - 1] + Y);
                }
            }
        }
 
        // Returning the minimum cost required
        // to make the entire string a palindrome
        return dp[0][N - 1];
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int N = 5;
        int X = 1;
        int Y = 2;
        String S = "rrefa";
 
        // Function call
        int answer = minCost(S, N, X, Y);
        System.out.println(answer);
    }
}


Python




def minCost(S, N, X, Y):
    # Initializing a 2D array to store the
    # minimum cost required to make a
    # substring from i to j a palindrome
    dp = [[0 for i in range(N)] for j in range(N)]
    # Filling the diagonal elements of the
    # dp matrix with 0, as the minimum cost
    # required to make a single character
    # a palindrome is 0
    for i in range(N):
        dp[i][i] = 0
 
    # Iterating over all possible substrings
    # of length 2 to N, and computing the
    # minimum cost required to make each
    # substring a palindrome
    for L in range(2, N+1):
        for i in range(N-L+1):
            j = i + L - 1
            if S[i] == S[j]:
                dp[i][j] = dp[i+1][j-1]
            else:
                dp[i][j] = min(dp[i][j-1]+X, dp[i+1][j]+X, dp[i+1][j-1]+Y)
 
    # Returning the minimum cost required
    # to make the entire string a palindrome
    return dp[0][N-1]
 
# Driver code
N = 5
X = 1
Y = 2
S = "rrefa"
 
# Function call
answer = minCost(S, N, X, Y)
print(answer)


C#




using System;
 
class Program
{
    static int MinCost(string S, int N, int X, int Y)
    {
        // Initializing a 2D array to store the
        // minimum cost required to make a
        // substring from i to j a palindrome
        int[,] dp = new int[N, N];
 
        // Filling the diagonal elements of the
        // dp matrix with 0, as the minimum cost
        // required to make a single character
        // a palindrome is 0
        for (int i = 0; i < N; i++)
        {
            dp[i, i] = 0;
        }
 
        // Iterating over all possible substrings
        // of length 2 to N, and computing the
        // minimum cost required to make each
        // substring a palindrome
        for (int L = 2; L <= N; L++)
        {
            for (int i = 0; i < N - L + 1; i++)
            {
                int j = i + L - 1;
                if (S[i] == S[j])
                {
                    dp[i, j] = dp[i + 1, j - 1];
                }
                else
                {
                    dp[i, j] = Math.Min(Math.Min(dp[i, j - 1] + X,
                          dp[i + 1, j] + X), dp[i + 1, j - 1] + Y);
                }
            }
        }
 
        // Returning the minimum cost required
        // to make the entire string a palindrome
        return dp[0, N - 1];
    }
 
    static void Main(string[] args)
    {
        int N = 5;
        int X = 1;
        int Y = 2;
        string S = "rrefa";
 
        // Function call
        int answer = MinCost(S, N, X, Y);
        Console.WriteLine(answer);
    }
}


Javascript




function minCost(S, N, X, Y)
{
 
  // Initializing a 2D array to store the
  // minimum cost required to make a
  // substring from i to j a palindrome
  const dp = new Array(N);
  for (let i = 0; i < N; i++) {
    dp[i] = new Array(N).fill(0);
  }
   
  // Filling the diagonal elements of the
  // dp matrix with 0, as the minimum cost
  // required to make a single character
  // a palindrome is 0
  for (let i = 0; i < N; i++) {
    dp[i][i] = 0;
  }
 
  // Iterating over all possible substrings
  // of length 2 to N, and computing the
  // minimum cost required to make each
  // substring a palindrome
  for (let L = 2; L <= N; L++) {
    for (let i = 0; i <= N - L; i++) {
      const j = i + L - 1;
      if (S[i] === S[j]) {
        dp[i][j] = dp[i + 1][j - 1];
      } else {
        dp[i][j] = Math.min(dp[i][j - 1] + X, dp[i + 1][j] + X, dp[i + 1][j - 1] + Y);
      }
    }
  }
 
  // Returning the minimum cost required
  // to make the entire string a palindrome
  return dp[0][N - 1];
}
 
// Driver code
const N = 5;
const X = 1;
const Y = 2;
const S = "rrefa";
 
// Function call
const answer = minCost(S, N, X, Y);
console.log(answer);


Output

3

Time Complexity:- The time complexity of the given code is O(N^2) because there are two nested loops, where the outer loop iterates N-1 times and the inner loop iterates N-L+1 times (where L ranges from 2 to N). Each iteration of the inner loop takes constant time, so the total time complexity is O((N-1) * (N-1)) = O(N^2).

Space Complexity:- The space complexity of the given code is also O(N^2) because it uses a 2D array (dp) of size NxN to store the minimum cost required to make each substring a palindrome.

Last Updated :
02 Aug, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments