Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AIMinimum cost of choosing the array element

Minimum cost of choosing the array element

Given an array arr[] of N integers and an integer M and the cost of selecting any array element(say x) at any day(say d), is x*d. The task is to minimize the cost of selecting 1, 2, 3, …, N array where each day at most M elements is allowed to select.
Examples: 
 

Input: arr[] = {6, 19, 3, 4, 4, 2, 6, 7, 8}, M = 2 
Output: 2 5 11 18 30 43 62 83 121 
Explanation: 
For selecting 1, 2, 3, .. , N elements when at most 2 elements are allowed to select each day:
The Cost of selecting 1 element: 
select one smallest element on day 1, then cost is 2*1 = 2 
The Cost of selecting 2 elements: 
select two smallest elements on day 1, then cost is (2+3)*1 = 5
The Cost of selecting 3 elements: 
select 2nd and 3rd smallest elements on day 1, then cost is (3+4)*1 = 7 
select 1st smallest element on day 2, then cost is 2*2 = 4 
So, the total cost is 7 + 4 = 11 
Similarly, we can find the cost for selecting 4, 5, 6, 7, 8 and 9 elements is 18, 30, 43, 62, 83 and 121 respectively.
Input: arr[] = {6, 19, 12, 6, 7, 9}, M = 3 
Output: 6 12 19 34 52 78 
 

 

Approach: The idea is to use Prefix Sum Array
 

  1. Sort the given array in increasing order.
  2. Store the prefix sum of the sorted array in pref[]. This prefix sum gives the minimum cost of selecting the 1, 2, 3, … N array elements when atmost one element is allowed to select each day.
  3. To find the minimum cost when atmost M element is allowed to select each day, update the prefix array pref[] from index M to N as: 
     
pref[i] = pref[i] + pref[i-M]
  1. For Example: 
     
arr[] = {6, 9, 3, 4, 4, 2, 6, 7, 8}
After sorting arr[]:
arr[] = {2, 3, 4, 4, 6, 6, 7, 8, 9}

Prefix array is:
pref[] = {2, 5, 9, 13, 19, 25, 32, 40, 49}
Now at every index i, pref[i] gives the cost 
of selecting i array element when atmost one 
element is allowed to select each day.
  1.  
Now for M = 3, when at most 3 elements
are allowed to select each day, then 
by update every index(from M to N)
of pref[] as:
pref[i] = pref[i] + pref[i-M] 

the cost of selecting elements 
from (i-M+1)th to ith index on day 1,
the cost of selecting elements 
from (i-M)th to (i-2*M)th index on day 2
...
...
...
the cost of selecting elements 
from (i-n*M)th to 0th index on day N.
  1.  
  2. After the above step, every index(say i) of prefix array pref[] stores the cost selecting i elements when atmost M elements are allowed to select each day.

Below is the implementation of the above approach: 
 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that find the minimum cost of
// selecting array element
void minimumCost(int arr[], int N, int M) {
     
    // Sorting the given array in
    // increasing order
    sort(arr, arr + N);
     
    // To store the prefix sum of arr[]
    int pref[N];
     
    pref[0] = arr[0];
     
    for(int i = 1; i < N; i++) {
        pref[i] = arr[i] + pref[i-1];
    }
     
    // Update the pref[] to find the cost
    // selecting array element by selecting
    // at most M element
    for(int i = M; i < N; i++) {
        pref[i] += pref[i-M];
    }
     
    // Print the pref[] for the result
    for(int i = 0; i < N; i++) {
        cout << pref[i] << ' ';
    }
     
}
 
// Driver Code
int main()
{
    int arr[] = {6, 19, 3, 4, 4, 2, 6, 7, 8};
    int M = 2;
    int N = sizeof(arr)/sizeof(arr[0]);
     
    minimumCost(arr, N, M);
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function that find the minimum cost of
// selecting array element
static void minimumCost(int arr[], int N, int M)
{
     
    // Sorting the given array in
    // increasing order
    Arrays.sort(arr);
     
    // To store the prefix sum of arr[]
    int []pref = new int[N];
    pref[0] = arr[0];
     
    for(int i = 1; i < N; i++)
    {
        pref[i] = arr[i] + pref[i - 1];
    }
     
    // Update the pref[] to find the cost
    // selecting array element by selecting
    // at most M element
    for(int i = M; i < N; i++)
    {
        pref[i] += pref[i - M];
    }
     
    // Print the pref[] for the result
    for(int i = 0; i < N; i++)
    {
        System.out.print(pref[i] + " ");
    }
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 6, 19, 3, 4, 4, 2, 6, 7, 8 };
    int M = 2;
    int N = arr.length;
     
    minimumCost(arr, N, M);
}
}
 
// This code is contributed by sapnasingh4991


Python3




# Python3 program for the above approach
 
# Function that find the minimum cost
# of selecting array element
def minimumCost(arr, N, M):
     
    # Sorting the given array in
    # increasing order
    arr.sort()
     
    # To store the prefix sum of arr[]
    pref = []
     
    pref.append(arr[0])
     
    for i in range(1, N):
        pref.append(arr[i] + pref[i - 1])
     
    # Update the pref[] to find the cost
    # selecting array element by selecting
    # at most M element
    for i in range(M, N):
        pref[i] += pref[i - M]
     
    # Print the pref[] for the result
    for i in range(N):
        print(pref[i], end = ' ')
 
# Driver Code
arr = [ 6, 19, 3, 4, 4, 2, 6, 7, 8 ]
M = 2
N = len(arr)
 
minimumCost(arr, N, M);
 
# This code is contributed by yatinagg


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function that find the minimum cost 
// of selecting array element
static void minimumCost(int []arr, int N,
                                   int M)
{
     
    // Sorting the given array 
    // in increasing order
    Array.Sort(arr);
     
    // To store the prefix sum of []arr
    int []pref = new int[N];
    pref[0] = arr[0];
     
    for(int i = 1; i < N; i++)
    {
       pref[i] = arr[i] + pref[i - 1];
    }
     
    // Update the pref[] to find the cost
    // selecting array element by selecting
    // at most M element
    for(int i = M; i < N; i++)
    {
       pref[i] += pref[i - M];
    }
     
    // Print the pref[] for the result
    for(int i = 0; i < N; i++)
    {
       Console.Write(pref[i] + " ");
    }
}
 
// Driver Code
public static void Main(String[] args)
{
    int []arr = { 6, 19, 3, 4, 4, 
                  2, 6, 7, 8 };
    int M = 2;
    int N = arr.Length;
     
    minimumCost(arr, N, M);
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
 
// Javascript program for the above approach
 
// Function that find the minimum cost of
// selecting array element
function minimumCost(arr, N, M)
{
       
    // Sorting the given array in
    // increasing order
    arr.sort((a, b) => a - b);
       
    // To store the prefix sum of arr[]
    let pref = Array.from({length: N}, (_, i) => 0);
    pref[0] = arr[0];
       
    for(let i = 1; i < N; i++)
    {
        pref[i] = arr[i] + pref[i - 1];
    }
       
    // Update the pref[] to find the cost
    // selecting array element by selecting
    // at most M element
    for(let i = M; i < N; i++)
    {
        pref[i] += pref[i - M];
    }
       
    // Print the pref[] for the result
    for(let i = 0; i < N; i++)
    {
       document.write(pref[i] + " ");
    }
}
 
// Driver Code
     
    let arr = [ 6, 19, 3, 4, 4, 2, 6, 7, 8 ];
    let M = 2;
    let N = arr.length;
       
    minimumCost(arr, N, M);
       
</script>


Output: 

2 5 11 18 30 43 62 83 121

 

Time Complexity: O(N*log N), where N is the number of element in the array.

Space Complexity: O(N) as pref array has been created. Here, N is the number of element in the array.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments