Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMinimum concatenation required to get strictly LIS for array with repetitive elements...

Minimum concatenation required to get strictly LIS for array with repetitive elements | Set-2

Given an array A[] of size n where there can be repetitive elements in the array. We have to find the minimum concatenation required for sequence A to get strictly The Longest Increasing Subsequence. For array A[] we follow 1 based indexing.

Examples:

Input: A = {2, 1, 2, 4, 3, 5} 
Output:
Explanation: 
We can concatenate A two times as [2, 1, 2, 4, 3, 5, 2, 1, 2, 4, 3, 5] and then output for index 2, 3, 5, 10, 12 which gives sub-sequence as 1 -> 2 -> 3 -> 4 -> 5.

Input: A = {1, 3, 2, 1, 2} 
Output:
Explanation: 
We can concatenate A two times as [1, 3, 2, 1, 2, 1, 3, 2, 1, 2] and then output for index 1, 3, 7 which gives sub-sequence as 1 -> 2 -> 3. 

Approach: 
To solve the problem mentioned above the very first observation is that a strictly increasing sub-sequence will always have its length equal to the number of unique elements present in sequence A[]. Hence, the maximum length of the subsequence is equal to the count of the distinct elements. To solve the problem follow the steps given below: 

  • Initialize a variable let’s say ans to 1 and partition the sequence in two halves the left subsequence and the right one. Initialize the leftSeq to NULL and copy the original sequence in the rightSeq.
  • Traverse in the right subsequence to find the minimum element, represented by variable CurrElement and store its index.
  • Now update the left and right subsequence, where the leftSeq is updated with the given sequence up to the index which stores the minimum element in the right subsequence. And the rightSeq to given sequence from the minimum index value until the end.
  • Traverse the array to get the next minimum element and update the value for CurrElement. If no such minimum value is there in rightSeq then it has to be in leftSeq. Find the index of that element in the left subsequence and store its index.
  • Now again update the value for left and right subsequence where leftSeq = given sequence up to kth index and rightSeq = given sequence from kth index to end. Repeat the process until the array limit is reached.
  • Increment the value for ans by 1 and stop when CurrElement is equal to the highest element.

Below is the implementation of the above approach:

C++




// C++ implementation to Find the minimum
// concatenation required to get strictly
// Longest Increasing Subsequence for the
// given array with repetitive elements
#include <bits/stdc++.h>
using namespace std;
 
int LIS(int arr[], int n)
{
    // ordered map containing value and
    // a vector containing index of
    // it's occurrences
    map<int, vector<int> > m;
 
    // Mapping index with their values
    // in ordered map
    for (int i = 0; i < n; i++)
        m[arr[i]].push_back(i);
 
    // k refers to present minimum index
    int k = n;
 
    // Stores the number of concatenation
    // required
    int ans = 0;
 
    // Iterate over map m
    for (auto it = m.begin(); it != m.end();
                                       it++) {
        // it.second refers to the vector
        // containing all corresponding
        // indexes
 
        // it.second.back refers to the
        // last element of corresponding vector
 
        if (it->second.back() < k) {
            k = it->second[0];
            ans += 1;
        }
        else
 
            // find the index of next minimum
            // element in the sequence
            k = *lower_bound(it->second.begin(),
                            it->second.end(), k);
    }
 
    // Return the final answer
    cout << ans << endl;
}
 
// Driver program
int main()
{
    int arr[] = { 1, 3, 2, 1, 2 };
 
    int n = sizeof(arr) / sizeof(arr[0]);
 
    LIS(arr, n);
 
    return 0;
}


Java




// Java implementation to Find the minimum
// concatenation required to get strictly
// Longest Increasing Subsequence for the
// given array with repetitive elements
import java.io.*;
import java.util.*;
 
class GFG{
 
static void LIS(int arr[], int n)
{
     
    // ordered map containing value and
    // a vector containing index of
    // it's occurrences
    TreeMap<Integer,
       List<Integer>> m = new TreeMap<Integer,
                                 List<Integer>>();
     
    // Mapping index with their values
    // in ordered map
    for(int i = 0; i < n; i++)
    {
        List<Integer> indexes;
         
        if (m.containsKey(arr[i]))
        {
            indexes = m.get(arr[i]);
        }
        else
        {
            indexes = new ArrayList<Integer>();
        }
        indexes.add(i);
        m.put(arr[i], indexes);
    }
     
    // k refers to present minimum index
    int k = n;
 
    // Stores the number of concatenation
    // required
    int ans = 0;
 
    // Iterate over map m
    for(Map.Entry<Integer,
             List<Integer>> it : m.entrySet())
    {
         
        // List containing all corresponding
        // indexes
        List<Integer> indexes = it.getValue();
 
        if (indexes.get(indexes.size() - 1) < k)
        {
            k = indexes.get(0);
            ans++;
        }
        else
         
            // Find the index of next minimum
            // element in the sequence
            k = lower_bound(indexes, k);
    }
     
    // Return the final answer
    System.out.println(ans);
}
 
static int lower_bound(List<Integer> indexes,
                       int k)
{
    int low = 0, high = indexes.size() - 1;
 
    while (low < high)
    {
        int mid = (low + high) / 2;
        if (indexes.get(mid) < k)
            low = mid + 1;
        else
            high = mid;
    }
    return indexes.get(low);
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 1, 3, 2, 1, 2 };
 
    int n = arr.length;
 
    LIS(arr, n);
}
}
 
// This code is contributed by jithin


Python3




# Python3 implementation to
# Find the minimum concatenation
# required to get strictly Longest
# Increasing Subsequence for the
# given array with repetitive elements
from bisect import bisect_left
 
def LIS(arr, n):
   
    # ordered map containing
    # value and a vector containing
    # index of it's occurrences
    # <int, vector<int> > m;
    m = {}
 
    # Mapping index with their
    # values in ordered map
    for i in range(n):
        m[arr[i]] = m.get(arr[i], [])
        m[arr[i]].append(i)
 
    # k refers to present
    # minimum index
    k = n
 
    # Stores the number of
    # concatenation required
    ans = 1
 
    # Iterate over map m
    for key, value in m.items():
       
        # it.second refers to the
        # vector containing all
        # corresponding indexes
 
        # it.second.back refers
        # to the last element of
        # corresponding vector
        if (value[len(value) - 1] < k):
            k = value[0]
            ans += 1
        else:
           
            # find the index of next
            # minimum element in the
            # sequence
            k = bisect_left(value, k)
 
    # Return the final
    # answer
    print(ans)
 
# Driver code
if __name__ == '__main__':
   
    arr =  [1, 3, 2, 1, 2]
    n = len(arr)
    LIS(arr, n)
 
# This code is contributed by bgangwar59


C#




using System;
using System.Collections.Generic;
 
class GFG {
 
  static void LIS(int[] arr, int n) {
 
    // ordered map containing value and
    // a vector containing index of
    // it's occurrences
    SortedDictionary<int, List<int>> m = new SortedDictionary<int, List<int>>();
 
    // Mapping index with their values
    // in ordered map
    for (int i = 0; i < n; i++) {
      List<int> indexes;
 
      if (m.ContainsKey(arr[i])) {
        indexes = m[arr[i]];
      }
      else {
        indexes = new List<int>();
      }
      indexes.Add(i);
      m[arr[i]] = indexes;
    }
 
    // k refers to present minimum index
    int k = n;
 
    // Stores the number of concatenation
    // required
    int ans = 0;
 
    // Iterate over map m
    foreach (KeyValuePair<int, List<int>> it in m) {
 
      // List containing all corresponding
      // indexes
      List<int> indexes = it.Value;
 
      if (indexes[indexes.Count - 1] < k) {
        k = indexes[0];
        ans++;
      }
      else
 
        // Find the index of next minimum
        // element in the sequence
        k = lower_bound(indexes, k);
    }
 
    // Return the final answer
    Console.WriteLine(ans);
  }
 
  static int lower_bound(List<int> indexes,
                         int k) {
    int low = 0, high = indexes.Count - 1;
 
    while (low < high) {
      int mid = (low + high) / 2;
      if (indexes[mid] < k)
        low = mid + 1;
      else
        high = mid;
    }
    return indexes[low];
  }
 
  // Driver code
  public static void Main() {
    int[] arr = { 1, 3, 2, 1, 2 };
    int n = arr.Length;
    LIS(arr, n);
  }
}
 
// This code is contributed by phasing17.


Javascript




// JavaScript implementation to Find the minimum
// concatenation required to get strictly
// Longest Increasing Subsequence for the
// given array with repetitive elements
 
const LIS = (arr, n) => {
    // Create map to store value and index
    let m = new Map();
 
    // Map values to their indexes
    for (let i = 0; i < n; i++) {
        if (!m.has(arr[i])) {
            m.set(arr[i], [i]);
        } else {
            m.get(arr[i]).push(i);
        }
    }
 
    // k refers to present minimum index
    let k = n;
 
    // Stores the number of concatenation required
    let ans = 0;
 
    // Iterate over map m
    for (const [key, value] of m) {
        // value refers to the array containing all corresponding indexes
 
        // value[value.length - 1] refers to the last element of the corresponding array
 
        if (value[value.length - 1] < k) {
            k = value[0];
            ans += 1;
        } else {
            // find the index of next minimum element in the sequence
            k = value.find(v => v >= k);
        }
    }
 
    // Return the final answer
    console.log(ans);
};
 
// Driver program
const arr = [1, 3, 2, 1, 2];
 
const n = arr.length;
 
LIS(arr, n);


Output: 

2

 

Time complexity: O(n * log n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
16 Feb, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments