Friday, January 10, 2025
Google search engine
HomeData Modelling & AIMinimum clicks to convert string X to Y

Minimum clicks to convert string X to Y

Given a starting string X of 3 characters, finishing string Y of 3 characters and an array of forbidden strings. The task is to find the minimum number of clicks to reach Y from X. 

Rules:

  • Each of the 3 characters changes in a circular manner i.e. on each click you can go from either a to b or a to z and none of the forbidden words is ever displayed.
  • If it is not possible to reach Y, print -1. In each click, only a single letter can be changed.
  • Each forbidden string is of the form: {“S1” “S2” “S3”} where each string Si contains forbidden letters for that character.
  • Forbidden string = {“ac” “bx” “lw”} implies words “abl”, “cxw”, “cbl”, “abw”, “cbw”, “axl”, “axw” and “cxl” are forbidden and will never be displayed.

Note: If the starting string X is also a possible combination of forbidden characters, then also the result should be -1.

Input: X = “znw”, Y = “lof”, N = 4 (no of forbidden strings)
forbidden =
{ ” qlb “, ” jcm “, ” mhoq ” },
{ ” azn “, ” piy “, ” vj ” },
{ ” by “, ” oy “, ” ubo ” },
{ ” jqm “, ” f “, ” ej ” }
Output: Minimum no of clicks required is 22
Explanation: Since no combination out of the given forbidden strings forms the final string Y, so the string Y becomes valid.

Thus minimum number of clicks required is computed as:
z – l in forward direction by 12 clicks
z – l in backward direction by 14 clicks
n – o in forward direction by 1 click
n – o in backward direction by 25 clicks
w – f in forward direction by 9 clicks
w – f in backward direction by 17 clicks

Total minimum clicks = 12 + 1 + 9 = 22.

Input: X = “bdb”, Y = “xxx”, N = 1 (no of forbidden strings)
forbidden = { ” ax “, ” acx “, ” bxy ” }
Output: Minimum no of clicks required is -1
Explanation: As “xxx” is a possible combination of forbidden characters, therefore it is not possible to reach Y from X.

Approach:

Use BFS(Breadth First Search) with certain modifications in order to get the min number of clicks, bypassing the forbidden strings.     

  1. Since each of the 3 positions can contain alphabets, hence create a 3D visited array of dimensions 26 * 26 * 26 in order to traverse the word states.
  2. To visualize each of the restricted words, create another 3D array of dimensions 26 * 26 * 26 to keep track of the words which must never be visited in the traversal.
  3. Since each of the 3 characters changes in a circular manner i.e, letters will change in a circular fashion on each click, there is a need to take care to modulo 26 every time the next letter is reached. 
  4. Let current state of word be [X Y Z]. Then on a single click movement, the 6 states are possible.
  5. Hence create 3 utility arrays dx, dy, dz to keep the traversal a streamlined process. Store each word state in a struct having 4 fields namely a, b, c (each of the 3 characters) and distance from the starting words.
  6. The six stare are following: 

 [ X+1 Y Z ], [ X-1 Y Z ], [ X Y+1 Z ], [ X Y-1 Z ], [ X Y Z+1 ], [ X Y Z-1 ].

Below is the implementation of above approach:

C++




// C++ code for above program.
#include <bits/stdc++.h>
using namespace std;
#define int long long int
 
// each node represents a word state
struct node {
    int a, b, c;
    // dist from starting word X
    int dist;
};
 
// 3D visited array
bool visited[26][26][26];
 
// 3D restricted array
bool restricted[26][26][26];
 
// utility arrays for single step
// traversal in left and right
int dx[6] = { 1, -1, 0, 0, 0, 0 };
int dy[6] = { 0, 0, 1, -1, 0, 0 };
int dz[6] = { 0, 0, 0, 0, 1, -1 };
 
// function to find the
// minimum clicks.
void solve(string start,
        string end, int qx,
        const vector<vector<string> >& forbidden)
{
 
    memset(visited, 0,
        sizeof(visited));
    memset(restricted, 0,
        sizeof(restricted));
 
    for (auto vec : forbidden) {
 
        string a = vec[0];
        string b = vec[1];
        string c = vec[2];
 
        for (auto x : a)
            for (auto y : b)
                for (auto z : c) {
 
                    // each invalid word is
                    // decoded and marked as
                    // restricted = true.
                    restricted[x - 'a']
                            [y - 'a']
                            [z - 'a']
                        = true;
                }
    }
 
    // starting and ending letter a
    int sa = start[0] - 'a';
    int ea = end[0] - 'a';
 
    // starting and ending letter b
    int sb = start[1] - 'a';
    int eb = end[1] - 'a';
 
    // starting and ending letter c
    int sc = start[2] - 'a';
    int ec = end[2] - 'a';
 
    if (restricted[sa][sb][sc]
        or restricted[ea][eb][ec]) {
 
        // check if starting word
        // or finishing word is
        // restricted or not
        cout << -1 << endl;
 
        return;
    }
 
    // queue of nodes for BFS
    queue<node> q;
 
    // initial starting word pushed in
    // queue. dist = 0 for starting word
    q.push({ sa, sb, sc, 0 });
 
    // mark as visited
    visited[sa][sb][sc] = true;
 
    while (!q.empty()) {
        node x = q.front();
        q.pop();
 
        // final destination reached condition
        if (x.a == (end[0] - 'a')
            and x.b == (end[1] - 'a')
            and x.c == (end[2] - 'a')) {
 
            cout << x.dist
                << endl;
            return;
        }
 
        int DIST = x.dist;
        for (int i = 0; i < 6; i++) {
 
            // mod 26 for circular letter sequence
 
            // next letter for a
            int A = (x.a + dx[i] + 26) % 26;
 
            // next letter for b
            int B = (x.b + dy[i] + 26) % 26;
 
            // next letter for c
            int C = (x.c + dz[i] + 26) % 26;
 
            if (!restricted[A][B][C]
                and !visited[A][B][C]) {
 
                // if a valid word state,
                // push into queue
                q.push({ A, B, C, DIST + 1 });
                visited[A][B][C] = true;
            }
        }
    }
 
    // reach here if not possible
    // to reach final word Y
    cout << -1 << endl;
}
 
// Driver Code
signed main()
{
    // starting string
    string X = "znw";
 
    // final string
    string Y = "lof";
 
    // no of restricting word vectors
    int N = 4;
 
    vector<vector<string> > forbidden
        = { { "qlb", "jcm", "mhoq" },
            { "azn", "piy", "vj" },
            { "by", "oy", "ubo" },
            { "jqm", "f", "ej" } };
 
    solve(X, Y, N, forbidden);
    return 0;
}


Java




// Java code addition
 
import java.io.*;
import java.util.*;
 
public class GFG {
 
    // each node represents a word state
    static class Node {
        int a, b, c;
        // dist from starting word X
        int dist;
 
        public Node(int a, int b, int c, int dist) {
            this.a = a;
            this.b = b;
            this.c = c;
            this.dist = dist;
        }
    }
 
    // 3D visited array
    static boolean[][][] visited = new boolean[26][26][26];
 
    // 3D restricted array
    static boolean[][][] restricted = new boolean[26][26][26];
 
    // utility arrays for single step
    // traversal in left and right
    static int[] dx = { 1, -1, 0, 0, 0, 0 };
    static int[] dy = { 0, 0, 1, -1, 0, 0 };
    static int[] dz = { 0, 0, 0, 0, 1, -1 };
 
    // function to find the minimum clicks.
    public static void solve(String start, String end, int qx,
            final ArrayList<ArrayList<String>> forbidden) {
 
        Arrays.fill(visited[0][0], false);
        Arrays.fill(restricted[0][0], false);
 
        for (ArrayList<String> vec : forbidden) {
 
            String a = vec.get(0);
            String b = vec.get(1);
            String c = vec.get(2);
 
            for (char x : a.toCharArray())
                for (char y : b.toCharArray())
                    for (char z : c.toCharArray()) {
 
                        // each invalid word is
                        // decoded and marked as
                        // restricted = true.
                        restricted[x - 'a']
                                [y - 'a']
                                [z - 'a']
                            = true;
                    }
        }
 
        // starting and ending letter a
        int sa = start.charAt(0) - 'a';
        int ea = end.charAt(0) - 'a';
 
        // starting and ending letter b
        int sb = start.charAt(1) - 'a';
        int eb = end.charAt(1) - 'a';
 
        // starting and ending letter c
        int sc = start.charAt(2) - 'a';
        int ec = end.charAt(2) - 'a';
 
        if (restricted[sa][sb][sc]
            || restricted[ea][eb][ec]) {
 
            // check if starting word
            // or finishing word is
            // restricted or not
            System.out.println(-1);
 
            return;
        }
 
        // queue of nodes for BFS
        Queue<Node> q = new LinkedList<Node>();
 
        // initial starting word pushed in
        // queue. dist = 0 for starting word
        q.add(new Node(sa, sb, sc, 0));
 
        // mark as visited
        visited[sa][sb][sc] = true;
 
        while (!q.isEmpty()) {
            Node x = q.poll();
 
            // final destination reached condition
            if (x.a == (end.charAt(0) - 'a')
                && x.b == (end.charAt(1) - 'a')
                && x.c == (end.charAt(2) - 'a')) {
 
                System.out.println(x.dist);
                return;
            }
 
            int DIST = x.dist;
            for (int i = 0; i < 6; i++) {
 
                // mod 26 for circular letter sequence
 
                // next letter for a
                int A = (x.a + dx[i] + 26) % 26;
 
                // next letter for b
                int B = (x.b + dy[i] + 26) % 26;
 
                // next letter for c
                int C = (x.c + dz[i] + 26) % 26;
 
                if (!restricted[A][B][C]
                    && !visited[A][B][C]) {
 
                    // if a valid word state,
                    // push into queue
                    q.add(new Node(A, B, C, DIST + 1 ));
                    visited[A][B][C] = true;
                }
            }
        }
 
        // reach here if not possible
        // to reach final word Y
        System.out.println(-1);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // starting string
        String X = "znw";
 
        // final string
        String Y = "lof";
 
        // no of restricting word vectors
        int N = 4;
 
        ArrayList<ArrayList<String>> forbidden = new ArrayList<ArrayList<String>>(3);
 
        // Adding elements to the 2D ArrayList
        forbidden.add(new ArrayList<String>(Arrays.asList("qlb", "jcm", "mhoq" )));
        forbidden.add(new ArrayList<String>(Arrays.asList("azn", "piy", "vj")));
        forbidden.add(new ArrayList<String>(Arrays.asList("by", "oy", "ubo")));
        forbidden.add(new ArrayList<String>(Arrays.asList( "jqm", "f", "ej")));
        solve(X, Y, N, forbidden);
    }
     
}
 
// The code is contributed by Arushi Goel.


Python3




# Python code for above program.
from collections import deque
 
dx = [1, -1, 0, 0, 0, 0]
dy = [0, 0, 1, -1, 0, 0]
dz = [0, 0, 0, 0, 1, -1]
 
# each node represents a word state
class Node:
    def __init__(self, a, b, c, dist):
        self.a = a
        self.b = b
        self.c = c
        # dist from starting word X
        self.dist = dist
 
# function to find the
# minimum clicks.
def solve(start, end, qx, forbidden):
    visited = [[[False for _ in range(26)]
                for _ in range(26)]
               for _ in range(26)]
    restricted = [[[False for _ in range(26)]
                   for _ in range(26)]
                  for _ in range(26)]
 
    for a, b, c in forbidden:
        for x in a:
            for y in b:
                for z in c:
                    # each invalid word is
                    # decoded and marked as
                    # restricted = true.
                    restricted[ord(x) - ord('a')][ord(y) -
                                                  ord('a')][ord(z) - ord('a')] = True
 
    # starting and ending letter a
    sa, ea = ord(start[0]) - ord('a'), ord(end[0]) - ord('a')
     
    # starting and ending letter b
    sb, eb = ord(start[1]) - ord('a'), ord(end[1]) - ord('a')
     
    # starting and ending letter c
    sc, ec = ord(start[2]) - ord('a'), ord(end[2]) - ord('a')
 
    if restricted[sa][sb][sc] or restricted[ea][eb][ec]:
        # check if starting word
        # or finishing word is
        # restricted or not
        print(-1)
        return
 
    q = deque()
     
    # initial starting word pushed in
    # queue. dist = 0 for starting word
    q.append(Node(sa, sb, sc, 0))
     
    # mark as visited
    visited[sa][sb][sc] = True
 
    while q:
        x = q.popleft()
        # final destination reached condition
        if x.a == ea and x.b == eb and x.c == ec:
            print(x.dist)
            return
 
        DIST = x.dist
        for i in range(6):
            # mod 26 for circular letter sequence
            # next letter for a
            A = (x.a + dx[i] + 26) % 26
            # next letter for b
            B = (x.b + dy[i] + 26) % 26
            # next letter for c
            C = (x.c + dz[i] + 26) % 26
 
            if not restricted[A][B][C] and not visited[A][B][C]:
                # if a valid word state,
                # push into queue
                q.append(Node(A, B, C, DIST + 1))
                visited[A][B][C] = True
 
    # reach here if not possible
    # to reach final word Y
    print(-1)
 
# Driver Code
 
# starting string
X = "znw"
 
# final string
Y = "lof"
 
# no of restricting word vectors
N = 4
forbidden = [["qlb", "jcm", "mhoq"], ["azn", "piy", "vj"], ["by", "oy", "ubo"], ["jqm", "f", "ej"]]
 
solve(X, Y, N, forbidden)


C#




// C#// each node represents a word state code for above program.
using System;
using System.Collections.Generic;
// each node represents a word state
public struct Node
{
    public int a, b, c;
     // dist from starting word X
    public int dist;
}
 
public class Program
{
     
 
    public static void Solve(string start, string end, int N, List<List<string>> forbidden)
    {
        // 3D visited array
        bool[,,] visited = new bool[26,26,26];
        // 3D restricted array
        bool[,,] restricted = new bool[26,26,26];
 
        foreach (List<string> vec in forbidden)
        {
            string a = vec[0];
            string b = vec[1];
            string c = vec[2];
 
            foreach (char x in a)
            {
                foreach (char y in b)
                {
                    foreach (char z in c)
                    {
                          // each invalid word is
                    // decoded and marked as
                    // restricted = true.    // starting and ending letter a
                        restricted[x - 'a', y - 'a', z - 'a'] = true;
                    }
                }
            }
        }
    // starting and ending letter a
        int sa = start[0] - 'a';
        int ea = end[0] - 'a';
    // starting and ending letter b
        int sb = start[1] - 'a';
        int eb = end[1] - 'a';
    // starting and ending letter c
        int sc = start[2] - 'a';
        int ec = end[2] - 'a';
 
        if (restricted[sa, sb, sc] || restricted[ea, eb, ec])
        {
              // check if starting word
        // or finishing word is
        // restricted or not
            Console.WriteLine("-1");
            return;
        }
    // queue of nodes for BFS
        Queue<Node> q = new Queue<Node>();
           // initial starting word pushed in
    // queue. dist = 0 for starting word
        q.Enqueue(new Node { a = sa, b = sb, c = sc, dist = 0 });
          // mark as visited
        visited[sa, sb, sc] = true;
 
        while (q.Count > 0)
        {
            Node x = q.Dequeue();
  // final destination reached condition
            if (x.a == ea && x.b == eb && x.c == ec)
            {
                Console.WriteLine(x.dist);
                return;
            }
 
            int DIST = x.dist;
            // utility arrays for single step
// traversal in left and right
            int[] dx = { 1, -1, 0, 0, 0, 0 };
            int[] dy = { 0, 0, 1, -1, 0, 0 };
            int[] dz = { 0, 0, 0, 0, 1, -1 };
 
            for (int i = 0; i < 6; i++)
            {
                   // mod 26 for circular letter sequence
 
            // next letter for a
                int A = (x.a + dx[i] + 26) % 26;
                 // next letter for b
                int B = (x.b + dy[i] + 26) % 26;
                 // next letter for c
                int C = (x.c + dz[i] + 26) % 26;
 
                if (!restricted[A, B, C] && !visited[A, B, C])
                {
                    q.Enqueue(new Node { a = A, b = B, c = C, dist = DIST + 1 });
                    visited[A, B, C] = true;
                }
            }
        }
    // reach here if not possible
    // to reach final word Y
        Console.WriteLine("-1");
    }
     
// Driver Code
    public static void Main()
    {
        // starting string
        string X = "znw";
        // final string
        string Y = "lof";
        // no of restricting word vectors
        int N = 4;
        List<List<string>> forbidden = new List<List<string>>
        {
            new List<string>{"qlb", "jcm", "mhoq"},
            new List<string>{"azn", "piy", "vj"},
            new List<string>{"by", "oy", "ubo"},
            new List<string>{"jqm", "f", "ej"}
        };
        Solve(X, Y, N, forbidden);
    }
}


Javascript




// JavaScript code for above program.
const dx = [1, -1, 0, 0, 0, 0];
const dy = [0, 0, 1, -1, 0, 0];
const dz = [0, 0, 0, 0, 1, -1];
 
// each node represents a word state
class Node {
  constructor(a, b, c, dist) {
    this.a = a;
    this.b = b;
    this.c = c;
    // dist from starting word X
    this.dist = dist;
  }
}
 
// function to find the minimum clicks.
function solve(start, end, forbidden) {
  const visited = Array.from({ length: 26 }, () =>
    Array.from({ length: 26 }, () => Array.from({ length: 26 }, () => false))
  );
  const restricted = Array.from({ length: 26 }, () =>
    Array.from({ length: 26 }, () => Array.from({ length: 26 }, () => false))
  );
 
  for (const [a, b, c] of forbidden) {
    for (const x of a) {
      for (const y of b) {
        for (const z of c) {
          // each invalid word is
          // decoded and marked as
          // restricted = true.
          restricted[x.charCodeAt() - 97][y.charCodeAt() - 97][
            z.charCodeAt() - 97
          ] = true;
        }
      }
    }
  }
 
  // starting and ending letter a
  const sa = start.charCodeAt(0) - 97;
  const ea = end.charCodeAt(0) - 97;
 
  // starting and ending letter b
  const sb = start.charCodeAt(1) - 97;
  const eb = end.charCodeAt(1) - 97;
 
  // starting and ending letter c
  const sc = start.charCodeAt(2) - 97;
  const ec = end.charCodeAt(2) - 97;
 
  if (restricted[sa][sb][sc] || restricted[ea][eb][ec]) {
    // check if starting word or finishing word is restricted or not
    console.log(-1);
    return;
  }
 
  const q = [];
  // initial starting word pushed in queue. dist = 0 for starting word
  q.push(new Node(sa, sb, sc, 0));
 
  // mark as visited
  visited[sa][sb][sc] = true;
 
  while (q.length > 0) {
    const x = q.shift();
    // final destination reached condition
    if (x.a === ea && x.b === eb && x.c === ec) {
      console.log(x.dist);
      return;
    }
 
    const DIST = x.dist;
    for (let i = 0; i < 6; i++) {
      // mod 26 for circular letter sequence
      // next letter for a
      const A = ((x.a + dx[i] + 26) % 26) | 0;
      // next letter for b
      const B = ((x.b + dy[i] + 26) % 26) | 0;
      // next letter for c
      const C = ((x.c + dz[i] + 26) % 26) | 0;
 
      if (!restricted[A][B][C] && !visited[A][B][C]) {
        // if a valid word state, push into queue
        q.push(new Node(A, B, C, DIST + 1));
        visited[A
        ][B][C] = true;
      }
    }
  }
 
  // reach here if not possible to reach final word Y
  console.log(-1);
}
 
// Driver Code
// starting string
const X = "znw";
 
// final string
const Y = "lof";
 
// no of restricting word vectors
const N = 4;
const forbidden = [
  ["qlb", "jcm", "mhoq"],
  ["azn", "piy", "vj"],
  ["by", "oy", "ubo"],
  ["jqm", "f", "ej"],
];
 
solve(X, Y, forbidden);


Output

22

Time Complexity: O(26 * 26 * 26), since at max, there can be 26*26*26 word states.
Space Complexity: O(26 * 26 * 26)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments