Monday, January 13, 2025
Google search engine
HomeData Modelling & AIMinimum characters to be replaced to make a string concatenation of a...

Minimum characters to be replaced to make a string concatenation of a K-length palindromic string

Given a string S of size N and a positive integer K ( where N % K = 0), the task is to find the minimum number of characters required to be replaced such that the string is K-periodic and the K-length periodic string must be a palindrome.

Examples:

Input: S = “abaaba”, K = 3
Output: 0
Explanation: The given string is already K-periodic and the periodic string “aba” is palindromic.

Input: S = “abaaba”, K = 2
Output: 2
Explanation: By changing the characters at index 1 and 4 to ‘a’, the updated string “aaaaaa” is K-periodic and the periodic string “aa” is palindromic. Therefore, minimum changes required is 2.

Approach: The idea is to create a Graph from the given string indexes and perform DFS Traversals to find the required number of changes. Follow the below steps below to solve this problem:

  • Initialize a variable total as 0 to store the count of changes required.
  • According to the given conditions, create a graph from the string and in the final string all characters at positions i, K ? i +1, K + i, 2K ? i +1, 2K + i, 3K ? i + 1, … for all 1 ? i ? K should be equal.
  • Iterate over the range [0, N] and add an undirected edge between index i and (N – i – 1).
  • Iterate over the range [0, N – M] and add an undirected edge between index i and (i + K).
  • To minimize the required number of operations, make all the letters equal to the one which appears at these positions the most, which can be easily found by performing DFS Traversal on the string.
  • Perform the DFS Traversal on the created graph for all unvisited nodes:
    • Find the maximum element with the maximum frequency among the visited characters in that traversal(say maxFrequency).
    • Update the total number of changes in characters by the difference of count of all visited characters in the DFS Traversal and the maximum frequency in the above step.
  • After completing the above steps, print the value of the total as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include "bits/stdc++.h"
using namespace std;
 
// Function to add an edge to graph
void addEdge(vector<int> adj[], int u,
             int v)
{
    adj[u].push_back(v);
    adj[v].push_back(u);
}
 
// Function to perform DFS traversal on the
// graph recursively from a given vertex u
void DFS(int u, vector<int> adj[],
         int& cnt, vector<bool>& visited,
         int fre[], string S)
{
    // Visit the current vertex
    visited[u] = true;
 
    // Total number of nodes
    // in this component
    cnt++;
 
    // Increment the frequency of u
    fre[S[u] - 'a']++;
 
    for (int i = 0;
         i < adj[u].size(); i++) {
        if (!visited[adj[u][i]]) {
            DFS(adj[u][i], adj, cnt,
                visited, fre, S);
        }
    }
}
 
// Function for finding the minimum
// number changes required in given string
int minimumOperations(string& S, int m)
{
    int V = 100;
    vector<int> adj[V];
    int total = 0, N = S.length();
 
    // Form the edges according to the
    // given conditions
    for (int i = 0; i < N; i++) {
        addEdge(adj, i, N - i - 1);
        addEdge(adj, N - i - 1, i);
    }
 
    for (int i = 0; i < N - m; i++) {
        addEdge(adj, i, i + m);
        addEdge(adj, i + m, i);
    }
 
    // Find minimum number of operations
    vector<bool> visited(V, 0);
 
    for (int i = 0; i < N; i++) {
 
        // Frequency array for finding
        // the most frequent character
        if (!visited[i]) {
 
            // Frequency array for finding
            // the most frequent character
            int fre[26] = { 0 };
            int cnt = 0, maxx = -1;
 
            DFS(i, adj, cnt, visited, fre, S);
 
            // Finding most frequent character
            for (int j = 0; j < 26; j++)
                maxx = max(maxx, fre[j]);
 
            // Change rest of the characters
            // to most frequent one
            total += cnt - maxx;
        }
    }
 
    // Print total number of changes
    cout << total;
}
 
// Driver Code
int main()
{
    string S = "abaaba";
    int K = 2;
 
    // Function Call
    minimumOperations(S, K);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to add an edge to graph
static void addEdge(Vector<Integer> adj[], int u,
                                           int v)
{
    adj[u].add(v);
    adj[v].add(u);
}
 
static int cnt = 0;
static boolean[] visited;
 
// Function to perform DFS traversal on the
// graph recursively from a given vertex u
static void DFS(int u, Vector<Integer> adj[],
                int fre[], String S)
{
     
    // Visit the current vertex
    visited[u] = true;
     
    // Total number of nodes
    // in this component
    cnt++;
     
    // Increment the frequency of u
    fre[S.charAt(u) - 'a']++;
     
    for(int i = 0; i < adj[u].size(); i++)
    {
        if (!visited[adj[u].get(i)])
        {
            DFS(adj[u].get(i), adj, fre, S);
        }
    }
}
 
// Function for finding the minimum
// number changes required in given String
static void minimumOperations(String S, int m)
{
    int V = 100;
    @SuppressWarnings("unchecked")
    Vector<Integer> []adj = new Vector[V];
     
    int total = 0, N = S.length();
     
    for(int i = 0; i < adj.length; i++)
        adj[i] = new Vector<Integer>();
         
    // Form the edges according to the
    // given conditions
    for(int i = 0; i < N; i++)
    {
        addEdge(adj, i, N - i - 1);
        addEdge(adj, N - i - 1, i);
    }
 
    for(int i = 0; i < N - m; i++)
    {
        addEdge(adj, i, i + m);
        addEdge(adj, i + m, i);
    }
 
    // Find minimum number of operations
    visited =  new boolean[V];
    for(int i = 0; i < N; i++)
    {
         
        // Frequency array for finding
        // the most frequent character
        if (!visited[i])
        {
             
            // Frequency array for finding
            // the most frequent character
            int fre[] = new int[26];
            cnt = 0;
            int maxx = -1;
             
            DFS(i, adj, fre, S);
             
            // Finding most frequent character
            for(int j = 0; j < 26; j++)
                maxx = Math.max(maxx, fre[j]);
                 
            // Change rest of the characters
            // to most frequent one
            total += cnt - maxx;
        }
    }
     
    // Print total number of changes
    System.out.print(total);
}
 
// Driver Code
public static void main(String[] args)
{
    String S = "abaaba";
    int K = 2;
     
    // Function Call
    minimumOperations(S, K);
}
}
 
// This code is contributed by aashish1995


Python3




# Python3 program for the above approach
import sys
sys.setrecursionlimit(1500)
 
# Function to add an edge to graph
def addEdge(u, v):
     
    global adj
    adj[u].append(v)
    adj[v].append(u)
 
# Function to perform DFS traversal on the
# graph recursively from a given vertex u
def DFS(u, fre, S):
     
    global visited, adj, cnt
     
    # Visit the current vertex
    visited[u] = 1
 
    # Total number of nodes
    # in this component
    cnt += 1
 
    # Increment the frequency of u
    fre[ord(S[u]) - ord('a')] += 1
 
    for i in adj[u]:
        if (visited[i] == 0):
            DFS(i, fre, S)
 
# Function for finding the minimum
# number changes required in given string
def minimumOperations(S, m):
     
    global adj, visited, cnt
 
    total, N = 0, len(S)
 
    # Form the edges according to the
    # given conditions
    for i in range(N):
        addEdge(i, N - i - 1)
        addEdge(N - i - 1, i)
 
    for i in range(N-m):
        addEdge(i, i + m)
        addEdge(i + m, i)
 
    for i in range(N):
         
        # Frequency array for finding
        # the most frequent character
        if (not visited[i]):
             
            # Frequency array for finding
            # the most frequent character
            fre = [0] * 26
            cnt, maxx = 0, -1
 
            DFS(i, fre, S)
 
            # Finding most frequent character
            for j in range(26):
                maxx = max(maxx, fre[j])
 
            # Change rest of the characters
            # to most frequent one
            total += cnt - maxx
 
    # Print total number of changes
    print (total)
 
# Driver Code
if __name__ == '__main__':
     
    adj = [[] for i in range(101)]
    visited, cnt = [0 for i in range(101)], 0
 
    S = "abaaba"
    K = 2
 
    # Function Call
    minimumOperations(S, K)
 
# This code is contributed by mohit kumar 29


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to add an edge to graph
static void addEdge(List<int> []adj, int u,
                                     int v)
{
    adj[u].Add(v);
    adj[v].Add(u);
}
 
static int cnt = 0;
static bool[] visited;
 
// Function to perform DFS traversal on the
// graph recursively from a given vertex u
static void DFS(int u, List<int> []adj,
                int []fre, String S)
{
     
    // Visit the current vertex
    visited[u] = true;
     
    // Total number of nodes
    // in this component
    cnt++;
     
    // Increment the frequency of u
    fre[S[u] - 'a']++;
     
    for(int i = 0; i < adj[u].Count; i++)
    {
        if (!visited[adj[u][i]])
        {
            DFS(adj[u][i], adj, fre, S);
        }
    }
}
 
// Function for finding the minimum
// number changes required in given String
static void minimumOperations(String S, int m)
{
    int V = 100;
    
    List<int> []adj = new List<int>[V];
     
    int total = 0, N = S.Length;
     
    for(int i = 0; i < adj.Length; i++)
        adj[i] = new List<int>();
         
    // Form the edges according to the
    // given conditions
    for(int i = 0; i < N; i++)
    {
        addEdge(adj, i, N - i - 1);
        addEdge(adj, N - i - 1, i);
    }
 
    for(int i = 0; i < N - m; i++)
    {
        addEdge(adj, i, i + m);
        addEdge(adj, i + m, i);
    }
 
    // Find minimum number of operations
    visited =  new bool[V];
    for(int i = 0; i < N; i++)
    {
         
        // Frequency array for finding
        // the most frequent character
        if (!visited[i])
        {
             
            // Frequency array for finding
            // the most frequent character
            int []fre = new int[26];
            cnt = 0;
            int maxx = -1;
             
            DFS(i, adj, fre, S);
             
            // Finding most frequent character
            for(int j = 0; j < 26; j++)
                maxx = Math.Max(maxx, fre[j]);
                 
            // Change rest of the characters
            // to most frequent one
            total += cnt - maxx;
        }
    }
     
    // Print total number of changes
    Console.Write(total);
}
 
// Driver Code
public static void Main(String[] args)
{
    String S = "abaaba";
    int K = 2;
     
    // Function Call
    minimumOperations(S, K);
}
}
 
// This code is contributed by aashish1995


Javascript




<script>
    // Javascript program for the above approach
     
    // Function to add an edge to graph
    function addEdge(adj, u, v)
    {
        adj[u].push(v);
        adj[v].push(u);
    }
 
    let cnt = 0;
    let visited;
 
    // Function to perform DFS traversal on the
    // graph recursively from a given vertex u
    function DFS(u, adj, fre, S)
    {
 
        // Visit the current vertex
        visited[u] = true;
 
        // Total number of nodes
        // in this component
        cnt++;
 
        // Increment the frequency of u
        fre[S[u].charCodeAt() - 'a'.charCodeAt()]++;
 
        for(let i = 0; i < adj[u].length; i++)
        {
            if (!visited[adj[u][i]])
            {
                DFS(adj[u][i], adj, fre, S);
            }
        }
    }
 
    // Function for finding the minimum
    // number changes required in given String
    function minimumOperations(S, m)
    {
        let V = 100;
 
        let adj = [];
        for(let i = 0; i < V; i++)
        {
            adj.push([]);
        }
 
        let total = 0, N = S.length;
 
        for(let i = 0; i < adj.length; i++)
            adj[i] = [];
 
        // Form the edges according to the
        // given conditions
        for(let i = 0; i < N; i++)
        {
            addEdge(adj, i, N - i - 1);
            addEdge(adj, N - i - 1, i);
        }
 
        for(let i = 0; i < N - m; i++)
        {
            addEdge(adj, i, i + m);
            addEdge(adj, i + m, i);
        }
 
        // Find minimum number of operations
        visited =  new Array(V);
        visited.fill(false);
        for(let i = 0; i < N; i++)
        {
 
            // Frequency array for finding
            // the most frequent character
            if (!visited[i])
            {
 
                // Frequency array for finding
                // the most frequent character
                let fre = new Array(26);
                fre.fill(0);
                cnt = 0;
                let maxx = -1;
 
                DFS(i, adj, fre, S);
 
                // Finding most frequent character
                for(let j = 0; j < 26; j++)
                    maxx = Math.max(maxx, fre[j]);
 
                // Change rest of the characters
                // to most frequent one
                total += cnt - maxx;
            }
        }
 
        // Print total number of changes
        document.write(total);
    }
     
    // Driver code
    let S = "abaaba";
    let K = 2;
      
    // Function Call
    minimumOperations(S, K);
     
    // This code is contributed by decode2207.
</script>


Output: 

2

 

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments