Wednesday, January 8, 2025
Google search engine
HomeData Modelling & AIMinimum and Maximum Prime Numbers of a Singly Linked List

Minimum and Maximum Prime Numbers of a Singly Linked List

Given a singly linked list containing N nodes, the task is to find the minimum and maximum prime number.

Examples: 

Input : List = 15 -> 16 -> 6 -> 7 -> 17
Output : Minimum : 7
         Maximum : 17

Input : List = 15 -> 3 -> 4 -> 2 -> 9
Output : Minimum : 2
         Maximum : 3

Approach:  

  1. The idea is to traverse the linked list to the end and initialize the max and min variable to INT_MIN and INT_MAX respectively.
  2. Check if the current node is prime or not. If Yes:
    • If current node’s value is greater than max then assign current node’s value to max.
    • If current node’s value is less than min then assign current node’s value to min.
  3. Repeat above step until end of list is reached.

Below is the implementation of above idea:  

C++




// C++ implementation to find minimum
// and maximum prime number of
// the singly linked list
#include <bits/stdc++.h>
 
using namespace std;
 
// Node of the singly linked list
struct Node {
    int data;
    Node* next;
};
 
// Function to insert a node at the beginning
// of the singly Linked List
void push(Node** head_ref, int new_data)
{
    Node* new_node = new Node;
    new_node->data = new_data;
    new_node->next = (*head_ref);
    (*head_ref) = new_node;
}
 
// Function to check if a number is prime
bool isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to find maximum and minimum
// prime nodes in a linked list
void minmaxPrimeNodes(Node** head_ref)
{
    int minimum = INT_MAX;
    int maximum = INT_MIN;
    Node* ptr = *head_ref;
 
    while (ptr != NULL) {
        // If current node is prime
        if (isPrime(ptr->data)) {
            // Update minimum
            minimum = min(minimum, ptr->data);
 
            // Update maximum
            maximum = max(maximum, ptr->data);
        }
        ptr = ptr->next;
    }
 
    cout << "Minimum : " << minimum << endl;
    cout << "Maximum : " << maximum << endl;
}
 
// Driver program
int main()
{
    // start with the empty list
    Node* head = NULL;
 
    // create the linked list
    // 15 -> 16 -> 7 -> 6 -> 17
    push(&head, 17);
    push(&head, 7);
    push(&head, 6);
    push(&head, 16);
    push(&head, 15);
 
    minmaxPrimeNodes(&head);
 
    return 0;
}


Java




// Java implementation to find minimum
// and maximum prime number of
// the singly linked list
class GFG
{
     
// Node of the singly linked list
static class Node
{
    int data;
    Node next;
};
 
// Function to insert a node at the beginning
// of the singly Linked List
static Node push(Node head_ref, int new_data)
{
    Node new_node = new Node();
    new_node.data = new_data;
    new_node.next = (head_ref);
    (head_ref) = new_node;
    return head_ref;
}
 
// Function to check if a number is prime
static boolean isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to find maximum and minimum
// prime nodes in a linked list
static void minmaxPrimeNodes(Node head_ref)
{
    int minimum = Integer.MAX_VALUE;
    int maximum = Integer.MIN_VALUE;
    Node ptr = head_ref;
 
    while (ptr != null)
    {
        // If current node is prime
        if (isPrime(ptr.data))
        {
            // Update minimum
            minimum = Math.min(minimum, ptr.data);
 
            // Update maximum
            maximum = Math.max(maximum, ptr.data);
        }
        ptr = ptr.next;
    }
 
    System.out.println("Minimum : " + minimum );
    System.out.println("Maximum : " + maximum );
}
 
// Driver code
public static void main(String args[])
{
    // start with the empty list
    Node head = null;
 
    // create the linked list
    // 15 . 16 . 7 . 6 . 17
    head = push(head, 17);
    head = push(head, 7);
    head = push(head, 6);
    head = push(head, 16);
    head = push(head, 15);
 
    minmaxPrimeNodes(head);
 
}
}
 
// This code is contributed by Arnab Kundu


Python3




# Python3 implementation to find minimum
# and maximum prime number of
# the singly linked list
     
# Structure of a Node
class Node:
    def __init__(self, data):
        self.data = data
        self.next = None
 
# Function to insert a node at the beginning
# of the singly Linked List
def push(head_ref, new_data) :
 
    new_node = Node(0)
    new_node.data = new_data
    new_node.next = (head_ref)
    (head_ref) = new_node
    return head_ref
 
# Function to check if a number is prime
def isPrime(n):
 
    # Corner cases
    if (n <= 1) :
        return False
    if (n <= 3) :
        return True
         
    # This is checked so that we can skip
    # middle five numbers in below loop
    if (n % 2 == 0 or n % 3 == 0) :
        return False
    i = 5
    while(i * i <= n) :
        if (n % i == 0 or n % (i + 2) == 0):
            return False
        i = i + 6
     
    return True
 
# Function to find maximum and minimum
# prime nodes in a linked list
def minmaxPrimeNodes(head_ref) :
 
    minimum = 999999999
    maximum = -999999999
    ptr = head_ref
 
    while (ptr != None):
         
        # If current node is prime
        if (isPrime(ptr.data)):
         
            # Update minimum
            minimum = min(minimum, ptr.data)
 
            # Update maximum
            maximum = max(maximum, ptr.data)
         
        ptr = ptr.next
 
    print ("Minimum : ", minimum)
    print ("Maximum : ", maximum)
 
# Driver code
 
# start with the empty list
head = None
 
# create the linked list
# 15 . 16 . 7 . 6 . 17
head = push(head, 17)
head = push(head, 7)
head = push(head, 6)
head = push(head, 16)
head = push(head, 15)
 
minmaxPrimeNodes(head)
 
# This code is contributed by Arnab Kundu


C#




// C# implementation to find minimum
// and maximum prime number of
// the singly linked list
using System;
     
class GFG
{
     
// Node of the singly linked list
public class Node
{
    public int data;
    public Node next;
};
 
// Function to insert a node at the beginning
// of the singly Linked List
static Node push(Node head_ref, int new_data)
{
    Node new_node = new Node();
    new_node.data = new_data;
    new_node.next = (head_ref);
    (head_ref) = new_node;
    return head_ref;
}
 
// Function to check if a number is prime
static bool isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to find maximum and minimum
// prime nodes in a linked list
static void minmaxPrimeNodes(Node head_ref)
{
    int minimum = int.MaxValue;
    int maximum = int.MinValue;
    Node ptr = head_ref;
 
    while (ptr != null)
    {
        // If current node is prime
        if (isPrime(ptr.data))
        {
            // Update minimum
            minimum = Math.Min(minimum, ptr.data);
 
            // Update maximum
            maximum = Math.Max(maximum, ptr.data);
        }
        ptr = ptr.next;
    }
 
    Console.WriteLine("Minimum : " + minimum);
    Console.WriteLine("Maximum : " + maximum);
}
 
// Driver code
public static void Main()
{
    // start with the empty list
    Node head = null;
 
    // create the linked list
    // 15 . 16 . 7 . 6 . 17
    head = push(head, 17);
    head = push(head, 7);
    head = push(head, 6);
    head = push(head, 16);
    head = push(head, 15);
 
    minmaxPrimeNodes(head);
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
// javascript implementation to find minimum
// and maximum prime number of
// the singly linked list     // Node of the singly linked list
class Node {
    constructor(val) {
        this.data = val;
        this.next = null;
    }
}
 
 
    // Function to insert a node at the beginning
    // of the singly Linked List
    function push(head_ref , new_data) {
var new_node = new Node();
        new_node.data = new_data;
        new_node.next = (head_ref);
        (head_ref) = new_node;
        return head_ref;
    }
 
    // Function to check if a number is prime
    function isPrime(n) {
        // Corner cases
        if (n <= 1)
            return false;
        if (n <= 3)
            return true;
 
        // This is checked so that we can skip
        // middle five numbers in below loop
        if (n % 2 == 0 || n % 3 == 0)
            return false;
 
        for (i = 5; i * i <= n; i = i + 6)
            if (n % i == 0 || n % (i + 2) == 0)
                return false;
 
        return true;
    }
 
    // Function to find maximum and minimum
    // prime nodes in a linked list
    function minmaxPrimeNodes(head_ref) {
        var minimum = Number.MAX_VALUE;
        var maximum = Number.MIN_VALUE;
var ptr = head_ref;
 
        while (ptr != null) {
            // If current node is prime
            if (isPrime(ptr.data)) {
                // Update minimum
                minimum = Math.min(minimum, ptr.data);
 
                // Update maximum
                maximum = Math.max(maximum, ptr.data);
            }
            ptr = ptr.next;
        }
 
        document.write("Minimum : " + minimum);
        document.write("<br/>Maximum : " + maximum);
    }
 
    // Driver code
     
        // start with the empty list
var head = null;
 
        // create the linked list
        // 15 . 16 . 7 . 6 . 17
        head = push(head, 17);
        head = push(head, 7);
        head = push(head, 6);
        head = push(head, 16);
        head = push(head, 15);
 
        minmaxPrimeNodes(head);
 
 
// This code contributed by umadevi9616
</script>


Output

Minimum : 7
Maximum : 17

Time Complexity: O(N), where N is the number of nodes in the linked list.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments