Tuesday, January 14, 2025
Google search engine
HomeData Modelling & AIMinimum adjacent swaps required to get Kth smallest number greater than given...

Minimum adjacent swaps required to get Kth smallest number greater than given number

Given numeric string S of size N and a positive integer K, the task is to find the minimum number of adjacent swaps required in S to obtain the Kth smallest numeric string greater than the given string.

Examples:

Input: S = “11112”, K = 4
Output: 4
Explanation:
The Kth(= 4th) smallest numeric string which is greater than the given string is “21111”. The sequence of adjacent swap to reach the string “21111” is “11112” -> “11121” -> “11211″ -> “12111″ -> “21111″.
Therefore, the minimum number of adjacent swaps required is 4.

Input: S = “12345”, K = 1
Output: 1

 

Approach: The given problem can be solved by using the Greedy Approach. Follow the steps below to solve the problem:

  • Store the copy of the current numeric string in a variable, say res.
  • Create a variable, say totalSwaps that stores the minimum swaps required.
  • Since K-th largest number is required, this statement is equal to finding K-th permutation starting from the current string.
  • Find the K-th permutation using the function next_permutation().
  • Iterate over the range [0, N) using the variable i and perform the following tasks:
    • If res[i] is not equal to str[i] then initialize the variable start as i+1 and traverse over a while loop till res[i] is not equal to str[start] and increase the value of i by 1.
    • Iterate a loop till i is not equal to start and swap the values str[start] and str[start – 1] and decrease the value of start by 1 and increase the value of totalSwaps by 1.
  • After performing the above steps, print the value of totalSwaps as the answer.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum number
// of swaps required to make the Kth
// smallest string greater than str
void minSwapsKthLargest(string str, int k)
{
    // Store the copy of the string
    string res = str;
 
    // Find the K-th permutation of
    // the given numeric string
    for (int i = 0; i < k; i++) {
        next_permutation(
            str.begin(), str.end());
      cout<<"str = "<<str<<endl;
    }
 
    // Stores the count of swaps required
    int swap_count = 0;
 
    // Traverse the string and find the
    // swaps required greedily
    for (int i = 0; i < res.length(); i++) {
 
        // If both characters do not match
        if (res[i] != str[i]) {
            int start = i + 1;
 
            // Search from i+1 index
            while (res[i] != str[start]) {
 
                // Find the index to swap
                start++;
            }
            while (i != start) {
                swap(str[start], str[start - 1]);
 
                // Swap until the characters
                // are at same index
                start--;
                swap_count++;
            }
        }
    }
 
    // Print the minimum number of counts
    cout << swap_count;
}
 
// Driver Code
int main()
{
    string S = "11112";
    int K = 4;
    minSwapsKthLargest(S, K);
 
    return 0;
}


Java




// Java program for the above approach
 
import java.util.*;
 
class GFG {
    static char[] next_permutation(char[] array) {
        int i = array.length - 1;
        while (i > 0 && array[i - 1] >= array[i]) {
            i--;
        }
 
        int j = array.length - 1;
 
        while (array[j] <= array[i - 1]) {
            j--;
        }
 
        char temp = array[i - 1];
        array[i - 1] = array[j];
        array[j] = temp;
 
        j = array.length - 1;
 
        while (i < j) {
            temp = array[i];
            array[i] = array[j];
            array[j] = temp;
            i++;
            j--;
        }
 
        return array;
    }
 
    // Function to find the minimum number
    // of swaps required to make the Kth
    // smallest String greater than str
    static void minSwapsKthLargest(String str, int k)
    {
       
        // Store the copy of the String
        char[] res = str.toCharArray();
        char[] s = str.toCharArray();
       
        // Find the K-th permutation of
        // the given numeric String
        for (int i = 0; i < k; i++) {
            s = next_permutation(s);
        }
 
        // Stores the count of swaps required
        int swap_count = 0;
 
        // Traverse the String and find the
        // swaps required greedily
        for (int i = 0; i < res.length; i++) {
 
            // If both characters do not match
            if (res[i] != s[i]) {
                int start = i + 1;
 
                // Search from i+1 index
                while (res[i] != s[start]) {
 
                    // Find the index to swap
                    start++;
                }
                while (i != start) {
                    char t = s[start];
                    s[start] = s[start - 1];
                    s[start - 1] = t;
                    // Swap until the characters
                    // are at same index
                    start--;
                    swap_count++;
                }
            }
        }
 
        // Print the minimum number of counts
        System.out.print(swap_count);
    }
 
    // Driver Code
    public static void main(String[] args) {
        String S = "11112";
        int K = 4;
        minSwapsKthLargest(S, K);
 
    }
}
 
// This code is contributed by Rajput-Ji


Python3




# Python Program to implement
# the above approach
def next_permutation(array):
 
    i = len(array) - 1
    while (i > 0 and ord(array[i - 1]) >= ord(array[i])):
        i -= 1
 
    if (i <= 0):
        return False
 
    j = len(array) - 1
 
    while (ord(array[j]) <= ord(array[i - 1])):
        j -= 1
 
    array[j],array[i - 1] = array[i - 1],array[j]
 
    j = len(array) - 1
 
    while (i < j):
        array[i],array[j] = array[j],array[i]
        i += 1
        j -= 1
 
    return array
 
# Function to find the minimum number
# of swaps required to make the Kth
# smallest string greater than str
def minSwapsKthLargest(Str, k):
 
    # Store the copy of the string
    res = list(Str)
    Str = list(Str)
 
    # Find the K-th permutation of
    # the given numeric string
    for i in range(k):
        next_permutation(Str)
 
    # Stores the count of swaps required
    swap_count = 0
 
    # Traverse the string and find the
    # swaps required greedily
    for i in range(len(res)):
 
        # If both characters do not match
        if (res[i] != Str[i]):
            start = i + 1
 
            # Search from i+1 index
            while (res[i] != Str[start]):
 
                # Find the index to swap
                start += 1
 
            while (i != start):
                Str[start],Str[start-1] = Str[start-1],Str[start]
 
                # Swap until the characters
                # are at same index
                start -= 1
                swap_count += 1
 
    # Print the minimum number of counts
    print(swap_count)
 
# Driver Code
S = "11112"
K = 4
minSwapsKthLargest(S, K)
 
# This code is contributed by shinjanpatra


C#




// C# program for the above approach
using System;
class GFG {
 
    static char[] next_permutation(char[] array)
    {
        int i = array.Length - 1;
        while (i > 0 && array[i - 1] >= array[i]) {
            i--;
        }
 
        int j = array.Length - 1;
 
        while (array[j] <= array[i - 1]) {
            j--;
        }
 
        char temp = array[i - 1];
        array[i - 1] = array[j];
        array[j] = temp;
 
        j = array.Length - 1;
 
        while (i < j) {
            temp = array[i];
            array[i] = array[j];
            array[j] = temp;
            i++;
            j--;
        }
 
        return array;
    }
 
    // Function to find the minimum number
    // of swaps required to make the Kth
    // smallest string greater than str
    static void minSwapsKthLargest(string str, int k)
    {
        // Store the copy of the string
        string res = str;
        char[] str1 = str.ToCharArray();
 
        // Find the K-th permutation of
        // the given numeric string
        for (int i = 0; i < k; i++) {
            next_permutation(str1);
        }
 
        // Stores the count of swaps required
        int swap_count = 0;
 
        // Traverse the string and find the
        // swaps required greedily
        for (int i = 0; i < res.Length; i++) {
 
            // If both characters do not match
            if (res[i] != str1[i]) {
                int start = i + 1;
 
                // Search from i+1 index
                while (res[i] != str1[start]) {
 
                    // Find the index to swap
                    start++;
                }
                while (i != start) {
                    char temp = str1[start];
                    str1[start] = str1[start - 1];
                    str1[start - 1] = temp;
 
                    // Swap until the characters
                    // are at same index
                    start--;
                    swap_count++;
                }
            }
        }
 
        // Print the minimum number of counts
        Console.WriteLine(swap_count);
    }
 
    // Driver Code
    public static void Main()
    {
        string S = "11112";
        int K = 4;
        minSwapsKthLargest(S, K);
    }
}
 
// This code is contributed by ukasp.


Javascript




<script>
        // JavaScript Program to implement
        // the above approach
        function next_permutation(array)
        {
            var i = array.length - 1;
            while (i > 0 && array[i - 1].charCodeAt(0) >= array[i].charCodeAt(0)) {
                i--;
                 
            }
 
            if (i <= 0) {
                return false;
            }
 
            var j = array.length - 1;
 
            while (array[j].charCodeAt(0) <= array[i - 1].charCodeAt(0)) {
                j--;
            }
 
            var temp = array[i - 1];
            array[i - 1] = array[j];
            array[j] = temp;
 
            j = array.length - 1;
 
            while (i < j) {
                temp = array[i];
                array[i] = array[j];
                array[j] = temp;
                i++;
                j--;
            }
 
            return array;
        }
 
        // Function to find the minimum number
        // of swaps required to make the Kth
        // smallest string greater than str
        function minSwapsKthLargest(str, k)
        {
         
            // Store the copy of the string
            let res = str.split('');
            str = str.split('')
 
            // Find the K-th permutation of
            // the given numeric string
            for (let i = 0; i < k; i++) {
                next_permutation(
                    str);
            }
 
            // Stores the count of swaps required
            let swap_count = 0;
 
            // Traverse the string and find the
            // swaps required greedily
            for (let i = 0; i < res.length; i++) {
 
                // If both characters do not match
                if (res[i] != str[i]) {
                    let start = i + 1;
 
                    // Search from i+1 index
                    while (res[i] != str[start]) {
 
                        // Find the index to swap
                        start++;
                    }
                    while (i != start) {
                        let temp = str[start];
                        str[start] = str[start - 1]
                        str[start - 1] = temp;
 
                        // Swap until the characters
                        // are at same index
                        start--;
                        swap_count++;
                    }
                }
            }
 
            // Print the minimum number of counts
            document.write(swap_count);
        }
 
        // Driver Code
        let S = "11112";
        let K = 4;
        minSwapsKthLargest(S, K);
 
    // This code is contributed by Potta Lokesh
    </script>


Output: 

4

 

Time Complexity: O(N*(N + K))
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments