Friday, January 3, 2025
Google search engine
HomeData Modelling & AIMinimum absolute difference between N and a power of 2

Minimum absolute difference between N and a power of 2

Given an integer N, the task is to find the minimum absolute difference between N and a power of 2.
Examples: 
 

Input: N = 4 
Output:
Power of 2 closest to 4 is 4. Therefore the minimum difference possible is 0.
Input: N = 9 
Output:
Power of 2 closest to 9 is 8 and 9 – 8 = 1 
 

 

Approach: Find the power of 2 closest to N on its left, left = 2floor(log2(N)) then the closest power of 2 on N’s right will be left * 2. Now the minimum absolute difference will be the minimum of N – left and right – N.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum difference
// between N and a power of 2
int minAbsDiff(int n)
{
    // Power of 2 closest to n on its left
    int left = pow(2, floor(log2(n)));
 
    // Power of 2 closest to n on its right
    int right = left * 2;
 
    // Return the minimum abs difference
    return min((n - left), (right - n));
}
 
// Driver code
int main()
{
    int n = 15;
    cout << minAbsDiff(n);
    return 0;
}


Java




// Java implementation of the above approach
import java.util.*;
 
class GFG
{
 
// Function to return the minimum difference
// between N and a power of 2
static int minAbsDiff(int n)
{
    // Power of 2 closest to n on its left
    int left = (int)Math.pow(2, (int)(Math.log(n) /
                                Math.log(2)));
 
    // Power of 2 closest to n on its right
    int right = left * 2;
 
    // Return the minimum abs difference
    return Math.min((n - left), (right - n));
}
 
// Driver code
public static void main(String args[])
{
    int n = 15;
    System.out.println(minAbsDiff(n));
}
}
 
// This code is contributed by
// Surendra_Gangwar


Python3




# Python3 implementation of the
# above approach
 
# from math lib import floor
# and log2 function
from math import floor, log2
 
# Function to return the minimum
# difference between N and a power of 2
def minAbsDiff(n) :
     
    # Power of 2 closest to n on its left
    left = pow(2, floor(log2(n)))
 
    # Power of 2 closest to n on its right
    right = left * 2
 
    # Return the minimum abs difference
    return min((n - left), (right - n))
 
# Driver code
if __name__ == "__main__" :
 
    n = 15
    print(minAbsDiff(n))
 
# This code is contributed by Ryuga


C#




// C# implementation of the above approach
using System;
 
class GFG
{
// Function to return the minimum difference
// between N and a power of 2
static double minAbsDiff(double n)
{
    // Power of 2 closest to n on its left
    double left = Math.Pow(2,
                Math.Floor(Math.Log(n, 2)));
 
    // Power of 2 closest to n on its right
    double right = left * 2;
 
    // Return the minimum abs difference
    return Math.Min((n - left), (right - n));
}
 
// Driver code
public static void Main()
{
    double n = 15;
    Console.Write(minAbsDiff(n));
}
}
 
// This code is contributed by
// Akanksha Rai


PHP




<?php
// PHP implementation of the above approach
 
// Function to return the minimum difference
// between N and a power of 2
function minAbsDiff($n)
{
    // Power of 2 closest to n on its left
    $left = pow(2, floor(log($n, 2)));
 
    // Power of 2 closest to n on its right
    $right = $left * 2;
 
    // Return the minimum abs difference
    return min(($n - $left), ($right - $n));
}
 
// Driver code
$n = 15;
echo minAbsDiff($n);
 
// This code is contributed
// by Akanksha Rai


Javascript




<script>
 
    // Javascript implementation of the above approach
     
    // Function to return the minimum difference
    // between N and a power of 2
    function minAbsDiff(n)
    {
        // Power of 2 closest to n on its left
        let left = Math.pow(2, Math.floor(Math.log2(n, 2)));
 
        // Power of 2 closest to n on its right
        let right = left * 2;
 
        // Return the minimum abs difference
        return Math.min((n - left), (right - n));
    }
     
    let n = 15;
    document.write(minAbsDiff(n));
     
</script>


Output: 

1

 

Time Complexity: O(1)

Auxiliary Space: O(1)

We can use left shift operator to optimize the implementation. 
 

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum difference
// between N and a power of 2
int minAbsDiff(int n)
{
    // Power of 2 closest to n on its left
    int left = 1 << ((int)floor(log2(n)));
 
    // Power of 2 closest to n on its right
    int right = left * 2;
 
    // Return the minimum abs difference
    return min((n - left), (right - n));
}
 
// Driver code
int main()
{
    int n = 15;
    cout << minAbsDiff(n);
    return 0;
}


Java




// Java implementation of the above approach
class GFG
{
     
// Function to return the minimum difference
// between N and a power of 2
static int minAbsDiff(int n)
{
    // Power of 2 closest to n on its left
    int left = 1 << ((int)Math.floor(Math.log(n) / Math.log(2)));
 
    // Power of 2 closest to n on its right
    int right = left * 2;
 
    // Return the minimum abs difference
    return Math.min((n - left), (right - n));
}
 
// Driver code
public static void main (String[] args)
{
    int n = 15;
    System.out.println(minAbsDiff(n));
}
}
 
// This code is contributed by chandan_jnu


Python3




# Python3 implementation of the
# above approach
import math
 
# Function to return the minimum
# difference between N and a power of 2
def minAbsDiff(n):
     
    # Power of 2 closest to n on its left
    left = 1 << (int)(math.floor(math.log2(n)))
 
    # Power of 2 closest to n on its right
    right = left * 2
 
    # Return the minimum abs difference
    return min((n - left), (right - n))
 
# Driver code
if __name__ == "__main__":
    n = 15
    print(minAbsDiff(n))
 
# This code is contributed
# by 29AjayKumar


C#




// C# implementation of the above approach
using System;
 
public class GFG
{
 
// Function to return the minimum difference
// between N and a power of 2
static int minAbsDiff(int n)
{
    // Power of 2 closest to n on its left
    int left = 1 << ((int)Math.Floor(Math.Log(n) / Math.Log(2)));
 
    // Power of 2 closest to n on its right
    int right = left * 2;
 
    // Return the minimum abs difference
    return Math.Min((n - left), (right - n));
}
 
// Driver code
static public void Main ()
{
    int n = 15;
    Console.WriteLine(minAbsDiff(n));
}
}
 
// This code is contributed by jit_t.


PHP




<?php
// PHP implementation of the above approach
 
// Function to return the minimum difference
// between N and a power of 2
function minAbsDiff($n)
{
    // Power of 2 closest to n on its left
    $left = 1 << ((floor(log($n) / log(2))));
 
    // Power of 2 closest to n on its right
    $right = $left * 2;
 
    // Return the minimum abs difference
    return min(($n - $left), ($right - $n));
}
 
// Driver code
$n = 15;
echo minAbsDiff($n);
 
// This code is contributed by ita_c
?>


Javascript




<script>
    // Javascript implementation of the above approach
     
    // Function to return the minimum difference
    // between N and a power of 2
    function minAbsDiff(n)
    {
        // Power of 2 closest to n on its left
        let left = 1 << (Math.floor(Math.log(n) / Math.log(2)));
 
        // Power of 2 closest to n on its right
        let right = left * 2;
 
        // Return the minimum abs difference
        return Math.min((n - left), (right - n));
    }
     
    let n = 15;
    document.write(minAbsDiff(n));
 
</script>


Output: 

1

 

Time complexity : O(1)

Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments