Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AIMinimize the sum of the array according the given condition

Minimize the sum of the array according the given condition

Given an array of integers A. The task is to minimize the sum of the elements of the array using the following rule: 
Choose two indices i and j and an arbitrary integer x, such that x is a divisor of A[i] and change them as following A[i] = A[i]/x and A[j] = A[j]*x.
Examples: 
 

Input: A = { 1, 2, 3, 4, 5 } 
Output: 14
Divide A[3] by 2 then 
A[3] = 4/2 = 2,
Multiply A[0] by 2 then 
A[0] = 1*2 = 2
Updated array A = { 2, 2, 3, 2, 5 } 
Hence sum = 14
Input: A = { 2, 4, 2, 3, 7 } 
Output: 18 
 

 

Approach: If any number is divided by x then it is optimal to multiply the x with the smallest number present in the array.
The idea is to get the minimum of the array and find the divisors of the particular element and keep checking that by how much the sum is reduced.
Below is the implementation of the above approach: 
 

C++




// C++ implementation
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum sum
void findMin(int arr[], int n)
{
    int sum = 0;
    for (int i = 0; i < n; i++)
        sum += arr[i];
 
    // sort the array to find the
    // minimum element
    sort(arr, arr + n);
 
    int min = arr[0];
    int max = 0;
 
    for (int i = n - 1; i >= 1; i--) {
        int num = arr[i];
        int total = num + min;
        int j;
 
        // finding the number to
        // divide
        for (j = 2; j <= num; j++) {
            if (num % j == 0) {
                int d = j;
                int now = (num / d)
                          + (min * d);
 
                // Checking to what
                // instance the sum
                // has decreased
                int reduce = total - now;
 
                // getting the max
                // difference
                if (reduce > max)
                    max = reduce;
            }
        }
    }
    cout << (sum - max);
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 2, 3, 4, 5 };
    int n = sizeof(arr) / sizeof(arr[0]);
    findMin(arr, n);
}


Java




// Java implementation of the above approach
import java.util.*;
 
class GFG
{
     
    // Function to return the minimum sum
    static void findMin(int arr[], int n)
    {
        int sum = 0;
        for (int i = 0; i < n; i++)
            sum += arr[i];
     
        // sort the array to find the
        // minimum element
        Arrays.sort(arr);
     
        int min = arr[0];
        int max = 0;
     
        for (int i = n - 1; i >= 1; i--)
        {
            int num = arr[i];
            int total = num + min;
            int j;
     
            // finding the number to
            // divide
            for (j = 2; j <= num; j++)
            {
                if (num % j == 0)
                {
                    int d = j;
                    int now = (num / d) +
                              (min * d);
     
                    // Checking to what
                    // instance the sum
                    // has decreased
                    int reduce = total - now;
     
                    // getting the max
                    // difference
                    if (reduce > max)
                        max = reduce;
                }
            }
        }
        System.out.println(sum - max);
    }
     
    // Driver Code
    public static void main (String[] args)
    {
        int arr[] = { 1, 2, 3, 4, 5 };
        int n = arr.length;
        findMin(arr, n);
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Function to return the minimum sum
def findMin(arr, n):
    sum = 0
    for i in range(0, n):
        sum = sum + arr[i]
 
    # sort the array to find the
    # minimum element
    arr.sort()
 
    min = arr[0]
    max = 0
 
    for i in range(n - 1, 0, -1):
        num = arr[i]
        total = num + min
 
        # finding the number to
        # divide
        for j in range(2, num + 1):
            if(num % j == 0):
                d = j
                now = (num // d) + (min * d)
 
                # Checking to what
                # instance the sum
                # has decreased
                reduce = total - now
 
                # getting the max
                # difference
                if(reduce > max):
                    max = reduce
 
    print(sum - max)
 
# Driver Code
arr = [1, 2, 3, 4, 5 ]
n = len(arr)
findMin(arr, n)
 
# This code is contributed by Sanjit_Prasad


C#




// C# implementation of the above approach
using System;
     
class GFG
{
     
    // Function to return the minimum sum
    static void findMin(int []arr, int n)
    {
        int sum = 0;
        for (int i = 0; i < n; i++)
            sum += arr[i];
     
        // sort the array to find the
        // minimum element
        Array.Sort(arr);
     
        int min = arr[0];
        int max = 0;
     
        for (int i = n - 1; i >= 1; i--)
        {
            int num = arr[i];
            int total = num + min;
            int j;
     
            // finding the number to
            // divide
            for (j = 2; j <= num; j++)
            {
                if (num % j == 0)
                {
                    int d = j;
                    int now = (num / d) +
                              (min * d);
     
                    // Checking to what
                    // instance the sum
                    // has decreased
                    int reduce = total - now;
     
                    // getting the max
                    // difference
                    if (reduce > max)
                        max = reduce;
                }
            }
        }
        Console.WriteLine(sum - max);
    }
     
    // Driver Code
    public static void Main (String[] args)
    {
        int []arr = { 1, 2, 3, 4, 5 };
        int n = arr.Length;
        findMin(arr, n);
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
// Javascript implementation
 
// Function to return the minimum sum
function findMin(arr, n)
{
    let sum = 0;
    for (let i = 0; i < n; i++)
        sum += arr[i];
 
    // sort the array to find the
    // minimum element
    arr.sort();
 
    let min = arr[0];
    let max = 0;
 
    for (let i = n - 1; i >= 1; i--) {
        let num = arr[i];
        let total = num + min;
        let j;
 
        // finding the number to
        // divide
        for (j = 2; j <= num; j++) {
            if (num % j == 0) {
                let d = j;
                let now = parseInt(num / d)
                          + (min * d);
 
                // Checking to what
                // instance the sum
                // has decreased
                let reduce = total - now;
 
                // getting the max
                // difference
                if (reduce > max)
                    max = reduce;
            }
        }
    }
    document.write(sum - max);
}
 
// Driver Code
    let arr = [ 1, 2, 3, 4, 5 ];
    let n = arr.length;
    findMin(arr, n);
 
</script>


Output: 

14

 

Time Complexity: O((N * logN) + (N * M)), where N is the size of the given array and M is the maximum element in the array.
Auxiliary Space: O(1), no extra space is required, so it is a constant.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments