Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AIMinimize the sum of differences of consecutive elements after removing exactly K...

Minimize the sum of differences of consecutive elements after removing exactly K elements

Given a sorted array of length ‘N’ and an integer ‘K'(K<N), the task is to remove exactly ‘K’ elements from the array such that the sum of the difference of consecutive elements of the array is minimized.
Examples: 
 

Input :  arr[]  = {1, 2, 3, 4}, k = 1
Output : 2

Let's consider all possible cases.
a) Remove 0th index: arr[] = {2, 3, 4}, ans = 2
b) Remove 1th index: arr[] = {1, 3, 4}, ans = 3
c) Remove 2nd index: arr[] = {1, 2, 4}, ans = 3
d) Remove 3th index: arr[] = {1, 2, 3}, ans = 2

Minimum of them all is 2, thus answer = 2

Input : arr[] = {1, 2, 10}, k = 1
Output : 1

 

Approach :
Removing elements from the ends is the only possible way to decrease the value of the sum. 
For instance, let the array = {1, 2, 3, 4}. If the second element in the array is removed, then the sum stays the same as the previous i.e. equal to 3. But, if the first or the last element is removed, the sum decreases to 2.
Greedy Approach: At each step, removing that element which decreases the sum by a greater amount. For example, let the array = {1, 3, 9, 33}, 33 is removed as it reduces the sum to 8 from 32. 
But, this greedy approach won’t work for certain test-cases. Example. arr[] = {1, 2, 100, 120, 140} and k = 2. Here, the final array of greedy approach is {1, 2, 100} where as the optimal array is {100, 120, 140}.
Dynamic Programming: The states of the DP are as follows: 
DP[l][r] means the minimum sum you can achieve by removing the required number of elements in the sub-array arr[l to r]. 
Thus, the recurrence relation will be 
 

DP[l][r] = min(DP[l][r-1], DP[l+1][r])

Below is the C++ implementation of the above idea. 
 

C++




// C++ implementation of the above approach.
#include <bits/stdc++.h>
using namespace std;
#define N 100
#define INF 1000000
 
// states of DP
int dp[N][N];
bool vis[N][N];
 
// function to find minimum sum
int findSum(int* arr, int n, int k, int l, int r)
{
    // base-case
    if ((l) + (n - 1 - r) == k)
        return arr[r] - arr[l];
    // if state is solved before, return
    if (vis[l][r])
        return dp[l][r];
    // marking the state as solved
    vis[l][r] = 1;
    // recurrence relation
    return dp[l][r] = min(findSum(arr, n, k, l, r - 1),
                          findSum(arr, n, k, l + 1, r));
}
 
// driver function
int32_t main()
{
    // input values
    int arr[] = { 1, 2, 100, 120, 140 };
    int k = 2;
    int n = sizeof(arr) / sizeof(int);
 
    // callin the required function;
    cout << findSum(arr, n, k, 0, n - 1);
}


Java




// Java implementation of the above approach.
class GFG
{
    final static int N = 100 ;
    final static int INF = 1000000 ;
     
    // states of DP
    static int dp[][] = new int[N][N];
    static int vis[][] = new int[N][N];
     
    // function to find minimum sum
    static int findSum(int []arr, int n,
                       int k, int l, int r)
    {
        // base-case
        if ((l) + (n - 1 - r) == k)
            return arr[r] - arr[l];
             
        // if state is solved before, return
        if (vis[l][r] == 1)
            return dp[l][r];
             
        // marking the state as solved
        vis[l][r] = 1;
         
        // recurrence relation
        dp[l][r] = Math.min(findSum(arr, n, k, l, r - 1),
                            findSum(arr, n, k, l + 1, r));
                             
        return dp[l][r] ;
    }
     
    // Driver function
    public static void main (String[] args)
    {
        // input values
        int arr[] = { 1, 2, 100, 120, 140 };
        int k = 2;
        int n = arr.length;
     
        // calling the required function;
        System.out.println(findSum(arr, n, k, 0, n - 1));
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the above approach.
import numpy as np
 
N = 100
INF = 1000000
 
# states of DP
dp = np.zeros((N, N));
vis = np.zeros((N, N));
 
# function to find minimum sum
def findSum(arr, n, k, l, r) :
 
    # base-case
    if ((l) + (n - 1 - r) == k) :
        return arr[r] - arr[l];
         
    # if state is solved before, return
    if (vis[l][r]) :
        return dp[l][r];
         
    # marking the state as solved
    vis[l][r] = 1;
     
    # recurrence relation
    dp[l][r] = min(findSum(arr, n, k, l, r - 1),
                    findSum(arr, n, k, l + 1, r));
     
    return dp[l][r]
 
# driver function
if __name__ == "__main__" :
 
    # input values
    arr = [ 1, 2, 100, 120, 140 ];
    k = 2;
    n = len(arr);
 
    # calling the required function;
    print(findSum(arr, n, k, 0, n - 1));
     
# This code is contributed by AnkitRai01


C#




// C# implementation of the above approach.
using System;
 
class GFG
{
    static int N = 100 ;
 
    // states of DP
    static int [,]dp = new int[N, N];
    static int [,]vis = new int[N, N];
     
    // function to find minimum sum
    static int findSum(int []arr, int n,
                    int k, int l, int r)
    {
        // base-case
        if ((l) + (n - 1 - r) == k)
            return arr[r] - arr[l];
             
        // if state is solved before, return
        if (vis[l, r] == 1)
            return dp[l, r];
             
        // marking the state as solved
        vis[l, r] = 1;
         
        // recurrence relation
        dp[l, r] = Math.Min(findSum(arr, n, k, l, r - 1),
                            findSum(arr, n, k, l + 1, r));
                             
        return dp[l, r] ;
    }
     
    // Driver function
    public static void Main ()
    {
        // input values
        int []arr = { 1, 2, 100, 120, 140 };
        int k = 2;
        int n = arr.Length;
     
        // calling the required function;
        Console.WriteLine(findSum(arr, n, k, 0, n - 1));
    }
}
 
// This code is contributed by AnkitRai01


Javascript




<script>
 
// Javascript implementation of the above approach.
var N = 100;
var INF = 1000000;
 
// states of DP
var dp = Array.from(Array(N), ()=> Array(N));
var vis = Array.from(Array(N), ()=> Array(N));
 
// function to find minimum sum
function findSum(arr, n, k, l, r)
{
    // base-case
    if ((l) + (n - 1 - r) == k)
        return arr[r] - arr[l];
         
    // if state is solved before, return
    if (vis[l][r])
        return dp[l][r];
         
    // marking the state as solved
    vis[l][r] = 1;
     
    // recurrence relation
    dp[l][r] = Math.min(findSum(arr, n, k, l, r - 1),
                        findSum(arr, n, k, l + 1, r));
 
    return dp[l][r];
}
 
// driver function
// input values
var arr = [1, 2, 100, 120, 140];
var k= 2;
var n = arr.length;
 
// calling the required function;
document.write( findSum(arr, n, k, 0, n - 1));
 
</script>


Output: 

40

 

Time Complexity: O(n^2) 

Space Complexity: O(n2) as 2d arrays like dp and vis has been created. Here n is size of the input array.

NOTE: An O(N) approach also exists for this problem. But the above-mentioned method can be used to solve the problem for unsorted arrays too with a little modification.
Alternate Approach: 
Removing elements from left and right corner only. Therefore, if x elements are removed from the left, then K-x elements are removed from the right for every x in (0,K). 
The sum of differences, if the above operation is performed, will be equal to arr[N-(K-X)-1] – arr[X]
On iterating the x from (0, K), the minimum value is picked among the obtained values. 
Example: 
 

Input: arr[] = {1, 3, 7, 8, 13} ; k = 3
Output:  1
Explanation: 
Looping from X = 0 to X = K;
1) X = 0 and K-X = 3
 So 0 elements removed from left and 3 from right.
 array will be {1, 3} and answer will be 3 - 1 = 2. 
 min = 2
2) X = 1 and K-X = 2
 So 1 elements removed from left and 2 from right.
 array will be {3, 7} and answer will be 7 - 3  = 4.
  min = 2
3) X = 2 and K-X = 1
 So 2 elements removed from left and 1 from right.
 array will be {7, 8} and answer will be 8 - 7 = 1.
 min = 1
4) X = 3 and K-X = 0
 So 3 elements removed from left and 0 from right.
 array will be {8, 13} and answer will be 13 - 8 = 5.
 min =  1

 

Below is the implementation of the above approach. 
 

C++




//C++ implementation of the above approach.
#include <bits/stdc++.h>
using namespace std;
  
// function to find minimum sum
int findSum(int* arr, int n, int k)
{
  
    // variable to store final answer
    // and initialising it with the values
    // when 0 elements is removed from the left and
    // K from the right.
    int ans = arr[n - k - 1] - arr[0];
  
    // loop to simulate removal of elements
    for (int i = 1; i <= k; i++) {
        //removing i elements from the left and and K-i elements
        //from the right and updating the answer correspondingly
        ans = min(arr[n - 1 - (k - i)] - arr[i], ans);
    }
  
    // returning final answer
    return ans;
}
  
// driver function
int32_t main()
{
    // input values
    int arr[] = { 1, 2, 100, 120, 140 };
    int k = 2;
    int n = sizeof(arr) / sizeof(int);
  
    // calling the required function;
    cout << findSum(arr, n, k);
}


Java




// Java implementation of the above approach.
class GFG
{
     
    // function to find minimum sum
    static int findSum(int []arr, int n, int k)
    {
     
        // variable to store final answer
        // and initialising it with the values
        // when 0 elements is removed from the left and
        // K from the right.
        int ans = arr[n - k - 1] - arr[0];
     
        // loop to simulate removal of elements
        for (int i = 1; i <= k; i++)
        {
            // removing i elements from the left and and K-i elements
            // from the right and updating the answer correspondingly
            ans = Math.min(arr[n - 1 - (k - i)] - arr[i], ans);
        }
     
        // returning final answer
        return ans;
    }
     
    // Driver function
    public static void main (String[] args)
    {
        // input values
        int arr[] = { 1, 2, 100, 120, 140 };
        int k = 2;
        int n = arr.length;
     
        // callin the required function;
        System.out.println(findSum(arr, n, k));
    }
 
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the above approach.
 
# function to find minimum sum
def findSum(arr, n, k) :
 
    # variable to store final answer
    # and initialising it with the values
    # when 0 elements is removed from the left and
    # K from the right.
    ans = arr[n - k - 1] - arr[0];
 
    # loop to simulate removal of elements
    for i in range(1, k + 1) :
         
        # removing i elements from the left and and K-i elements
        # from the right and updating the answer correspondingly
        ans = min(arr[n - 1 - (k - i)] - arr[i], ans);
 
    # returning final answer
    return ans;
 
# Driver code
if __name__ == "__main__" :
 
    # input values
    arr = [ 1, 2, 100, 120, 140 ];
    k = 2;
    n = len(arr);
 
    # calling the required function;
    print(findSum(arr, n, k));
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the above approach.
using System;
 
class GFG
{
     
    // function to find minimum sum
    static int findSum(int []arr, int n, int k)
    {
     
        // variable to store final answer
        // and initialising it with the values
        // when 0 elements is removed from the left and
        // K from the right.
        int ans = arr[n - k - 1] - arr[0];
     
        // loop to simulate removal of elements
        for (int i = 1; i <= k; i++)
        {
            // removing i elements from the left and and K-i elements
            // from the right and updating the answer correspondingly
            ans = Math.Min(arr[n - 1 - (k - i)] - arr[i], ans);
        }
     
        // returning final answer
        return ans;
    }
     
    // Driver function
    public static void Main ()
    {
        // input values
        int []arr = { 1, 2, 100, 120, 140 };
        int k = 2;
        int n = arr.Length;
     
        // calling the required function;
        Console.WriteLine(findSum(arr, n, k));
    }
 
}
 
// This code is contributed by AnkitRai01


Javascript




<script>
 
// Javascript implementation of the above approach.
  
// function to find minimum sum
function findSum(arr, n, k)
{
  
    // variable to store final answer
    // and initialising it with the values
    // when 0 elements is removed from the left and
    // K from the right.
    var ans = arr[n - k - 1] - arr[0];
  
    // loop to simulate removal of elements
    for (var i = 1; i <= k; i++) {
        // removing i elements from the left and and K-i elements
        // from the right and updating the answer correspondingly
        ans = Math.min(arr[n - 1 - (k - i)] - arr[i], ans);
    }
  
    // returning final answer
    return ans;
}
  
// driver function
 
// input values
var arr = [1, 2, 100, 120, 140];
var k = 2;
var n = arr.length;
 
// callin the required function;
document.write( findSum(arr, n, k));
 
// This code is contributed by noob2000.
 
</script>


Output: 

40

 

Time Complexity: O(n), where n is the size of the given array 
Auxiliary Space: O(1), as no extra space is required

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments