Given an undirected graph, task is to find the minimum number of weakly connected nodes after converting this graph into directed one.
Weakly Connected Nodes : Nodes which are having 0 indegree(number of incoming edges).
Prerequisite : BFS traversal
Examples :
Input : 4 4 0 1 1 2 2 3 3 0 Output : 0 disconnected components Input : 6 5 1 2 2 3 4 5 4 6 5 6 Output : 1 disconnected components
Explanation :
Approach : We find a node which helps in traversing maximum nodes in a single walk. To cover all possible paths, DFS graph traversal technique is used for this.
Do the above steps to traverse the graph. Now, iterate through graph again and check which nodes are having 0 indegree.
Implementation:
C++
// C++ code to minimize the number // of weakly connected nodes #include <bits/stdc++.h> using namespace std; // Set of nodes which are traversed // in each launch of the DFS set< int > node; vector< int > Graph[10001]; // Function traversing the graph using DFS // approach and updating the set of nodes void dfs( bool visit[], int src) { visit[src] = true ; node.insert(src); int len = Graph[src].size(); for ( int i = 0; i < len; i++) if (!visit[Graph[src][i]]) dfs(visit, Graph[src][i]); } // building a undirected graph void buildGraph( int x[], int y[], int len){ for ( int i = 0; i < len; i++) { int p = x[i]; int q = y[i]; Graph[p].push_back(q); Graph[q].push_back(p); } } // computes the minimum number of disconnected // components when a bi-directed graph is // converted to a undirected graph int compute( int n) { // Declaring and initializing // a visited array bool visit[n + 5]; memset (visit, false , sizeof (visit)); int number_of_nodes = 0; // We check if each node is // visited once or not for ( int i = 0; i < n; i++) { // We only launch DFS from a // node if it is unvisited. if (!visit[i]) { // Clearing the set of nodes // on every relaunch of DFS node.clear(); // relaunching DFS from an // unvisited node. dfs(visit, i); // iterating over the node set to count the // number of nodes visited after making the // graph directed and storing it in the // variable count. If count / 2 == number // of nodes - 1, then increment count by 1. int count = 0; for ( auto it = node.begin(); it != node.end(); ++it) count += Graph[(*it)].size(); count /= 2; if (count == node.size() - 1) number_of_nodes++; } } return number_of_nodes; } //Driver function int main() { int n = 6,m = 4; int x[m + 5] = {1, 1, 4, 4}; int y[m+5] = {2, 3, 5, 6}; /*For given x and y above, graph is as below : 1-----2 4------5 | | | | | | 3 6 // Note : This code will work for // connected graph also as : 1-----2 | | \ | | \ | | \ 3-----4----5 */ // Building graph in the form of a adjacency list buildGraph(x, y, n); cout << compute(n) << " weakly connected nodes" ; return 0; } |
Java
// Java code to minimize the number // of weakly connected nodes import java.util.*; public class Main { // Set of nodes which are traversed // in each launch of the DFS static HashSet<Integer> node = new HashSet<Integer>(); static Vector<Vector<Integer>> Graph = new Vector<Vector<Integer>>(); // Function traversing the graph using DFS // approach and updating the set of nodes static void dfs( boolean [] visit, int src) { visit[src] = true ; node.add(src); int len = Graph.get(src).size(); for ( int i = 0 ; i < len; i++) if (!visit[Graph.get(src).get(i)]) dfs(visit, Graph.get(src).get(i)); } // Building a undirected graph static void buildGraph( int [] x, int [] y, int len) { for ( int i = 0 ; i < len; i++) { int p = x[i]; int q = y[i]; Graph.get(p).add(q); Graph.get(q).add(p); } } // Computes the minimum number of disconnected // components when a bi-directed graph is // converted to a undirected graph static int compute( int n) { // Declaring and initializing // a visited array boolean [] visit = new boolean [n + 5 ]; Arrays.fill(visit, false ); int number_of_nodes = 0 ; // We check if each node is // visited once or not for ( int i = 0 ; i < n; i++) { // We only launch DFS from a // node if it is unvisited. if (!visit[i]) { // Clearing the set of nodes // on every relaunch of DFS node.clear(); // Relaunching DFS from an // unvisited node. dfs(visit, i); // Iterating over the node set to count the // number of nodes visited after making the // graph directed and storing it in the // variable count. If count / 2 == number // of nodes - 1, then increment count by 1. int count = 0 ; for ( int it : node) count += Graph.get(it).size(); count /= 2 ; if (count == node.size() - 1 ) number_of_nodes++; } } return number_of_nodes; } public static void main(String[] args) { int n = 6 ; for ( int i = 0 ; i < 10001 ; i++) { Graph.add( new Vector<Integer>()); } int [] x = { 1 , 1 , 4 , 4 , 0 , 0 , 0 , 0 }; int [] y = { 2 , 3 , 5 , 6 , 0 , 0 , 0 , 0 }; /*For given x and y above, graph is as below : 1-----2 4------5 | | | | | | 3 6 // Note : This code will work for // connected graph also as : 1-----2 | | \ | | \ | | \ 3-----4----5 */ // Building graph in the form of a adjacency list buildGraph(x, y, n); System.out.print(compute(n) + " weakly connected nodes" ); } } // This code is contributed by suresh07. |
Python3
# Python3 code to minimize the number # of weakly connected nodes # Set of nodes which are traversed # in each launch of the DFS node = set () Graph = [[] for i in range ( 10001 )] # Function traversing the graph using DFS # approach and updating the set of nodes def dfs(visit, src): visit[src] = True node.add(src) llen = len (Graph[src]) for i in range (llen): if ( not visit[Graph[src][i]]): dfs(visit, Graph[src][i]) # Building a undirected graph def buildGraph(x, y, llen): for i in range (llen): p = x[i] q = y[i] Graph[p].append(q) Graph[q].append(p) # Computes the minimum number of disconnected # components when a bi-directed graph is # converted to a undirected graph def compute(n): # Declaring and initializing # a visited array visit = [ False for i in range (n + 5 )] number_of_nodes = 0 # We check if each node is # visited once or not for i in range (n): # We only launch DFS from a # node if it is unvisited. if ( not visit[i]): # Clearing the set of nodes # on every relaunch of DFS node.clear() # Relaunching DFS from an # unvisited node. dfs(visit, i) # Iterating over the node set to count the # number of nodes visited after making the # graph directed and storing it in the # variable count. If count / 2 == number # of nodes - 1, then increment count by 1. count = 0 for it in node: count + = len (Graph[(it)]) count / / = 2 if (count = = len (node) - 1 ): number_of_nodes + = 1 return number_of_nodes # Driver code if __name__ = = '__main__' : n = 6 m = 4 x = [ 1 , 1 , 4 , 4 , 0 , 0 , 0 , 0 , 0 ] y = [ 2 , 3 , 5 , 6 , 0 , 0 , 0 , 0 , 0 ] '''For given x and y above, graph is as below : 1-----2 4------5 | | | | | | 3 6 # Note : This code will work for # connected graph also as : 1-----2 | | \ | | \ | | \ 3-----4----5 ''' # Building graph in the form of a adjacency list buildGraph(x, y, n) print ( str (compute(n)) + " weakly connected nodes" ) # This code is contributed by rutvik_56 |
C#
// C# code to minimize the number // of weakly connected nodes using System; using System.Collections; using System.Collections.Generic; class GFG{ // Set of nodes which are traversed // in each launch of the DFS static HashSet< int > node = new HashSet< int >(); static List< int > []Graph = new List< int >[10001]; // Function traversing the graph using DFS // approach and updating the set of nodes static void dfs( bool []visit, int src) { visit[src] = true ; node.Add(src); int len = Graph[src].Count; for ( int i = 0; i < len; i++) if (!visit[Graph[src][i]]) dfs(visit, Graph[src][i]); } // Building a undirected graph static void buildGraph( int []x, int []y, int len) { for ( int i = 0; i < len; i++) { int p = x[i]; int q = y[i]; Graph[p].Add(q); Graph[q].Add(p); } } // Computes the minimum number of disconnected // components when a bi-directed graph is // converted to a undirected graph static int compute( int n) { // Declaring and initializing // a visited array bool []visit = new bool [n + 5]; Array.Fill(visit, false ); int number_of_nodes = 0; // We check if each node is // visited once or not for ( int i = 0; i < n; i++) { // We only launch DFS from a // node if it is unvisited. if (!visit[i]) { // Clearing the set of nodes // on every relaunch of DFS node.Clear(); // Relaunching DFS from an // unvisited node. dfs(visit, i); // Iterating over the node set to count the // number of nodes visited after making the // graph directed and storing it in the // variable count. If count / 2 == number // of nodes - 1, then increment count by 1. int count = 0; foreach ( int it in node) count += Graph[(it)].Count; count /= 2; if (count == node.Count - 1) number_of_nodes++; } } return number_of_nodes; } // Driver Code static void Main( string []args) { int n = 6; for ( int i = 0; i < 10001; i++) { Graph[i] = new List< int >(); } int []x = { 1, 1, 4, 4, 0, 0, 0, 0 }; int []y = { 2, 3, 5, 6, 0, 0, 0, 0 }; /*For given x and y above, graph is as below : 1-----2 4------5 | | | | | | 3 6 // Note : This code will work for // connected graph also as : 1-----2 | | \ | | \ | | \ 3-----4----5 */ // Building graph in the form of a adjacency list buildGraph(x, y, n); Console.Write(compute(n) + " weakly connected nodes" ); } } // This code is contributed by pratham76 |
Javascript
<script> // Javascript code to minimize the number // of weakly connected nodes // Set of nodes which are traversed // in each launch of the DFS let node = new Set(); let Graph = []; for (let i = 0; i < 10001; i++) { Graph.push([]); } // Function traversing the graph using DFS // approach and updating the set of nodes function dfs(visit, src) { visit[src] = true ; node.add(src); let len = Graph[src].length; for (let i = 0; i < len; i++) if (!visit[Graph[src][i]]) dfs(visit, Graph[src][i]); } // Building a undirected graph function buildGraph(x, y, len) { for (let i = 0; i < len; i++) { let p = x[i]; let q = y[i]; Graph[p].push(q); Graph[q].push(p); } } // Computes the minimum number of disconnected // components when a bi-directed graph is // converted to a undirected graph function compute(n) { // Declaring and initializing // a visited array let visit = new Array(n + 5); visit.fill( false ); let number_of_nodes = 0; // We check if each node is // visited once or not for (let i = 0; i < n; i++) { // We only launch DFS from a // node if it is unvisited. if (!visit[i]) { // Clearing the set of nodes // on every relaunch of DFS node.clear(); // Relaunching DFS from an // unvisited node. dfs(visit, i); // Iterating over the node set to count the // number of nodes visited after making the // graph directed and storing it in the // variable count. If count / 2 == number // of nodes - 1, then increment count by 1. let count = 0; node.forEach ( function (it) { count += Graph[it].length; }) count = parseInt(count / 2); if (count == node.size - 1) number_of_nodes++; } } return number_of_nodes; } let n = 6; let x = [ 1, 1, 4, 4, 0, 0, 0, 0 ]; let y = [ 2, 3, 5, 6, 0, 0, 0, 0 ]; /*For given x and y above, graph is as below : 1-----2 4------5 | | | | | | 3 6 // Note : This code will work for // connected graph also as : 1-----2 | | \ | | \ | | \ 3-----4----5 */ // Building graph in the form of a adjacency list buildGraph(x, y, n); document.write(compute(n) + " weakly connected nodes" ); // This code is contributed by divyesh072019. </script> |
2 weakly connected nodes
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!