Given a number N, the task is to minimize the number by changing at most K digits. Note that the number should not contain any leading zeros.
Examples:
Input: N = 91945, K = 3
Output: 10045
Input: N = 1, K = 0
Output: 1
Approach:
- Replace the first digit with 1 if its not already 1 and update K accordingly.
- Now for the rest of the digits, replace the next K – 1 non-zero digits with a 0.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <iostream>using namespace std;// Function to return the minimized numberstring minNum(string num, int k){ // Total digits in the number int len = num.length(); // If the string is empty or there // are no operations to perform if (len == 0 || k == 0) return num; // "0" is a valid number if (len == 1) return "0"; // If the first digit is not already 1 then // update it to 1 and decrement k if (num[0] != '1') { num[0] = '1'; k--; } int i = 1; // While there are operations left // and the number can still be updated while (k > 0 && i < len) { // If the current digit is not already 0 // then update it to 0 and decrement k if (num[i] != '0') { num[i] = '0'; k--; } i++; } // Return the minimized number return num;}// Driver codeint main(){ string num = "91945"; int k = 3; cout << minNum(num, k); return 0;} |
Java
// Java implementation of the approachimport java.io.*;public class GFG{ // Function to return the minimized number static String minNum(char num[], int k) { // Total digits in the number int len = num.length; // If the string is empty or there // are no operations to perform if (len == 0 || k == 0) { String num_str = new String(num); return num_str; } // "0" is a valid number if (len == 1) return "0"; // If the first digit is not already 1 then // update it to 1 and decrement k if (num[0] != '1') { num[0] = '1'; k--; } int i = 1; // While there are operations left // and the number can still be updated while (k > 0 && i < len) { // If the current digit is not already 0 // then update it to 0 and decrement k if (num[i] != '0') { num[i] = '0'; k--; } i++; } String num_str = new String(num); // Return the minimised number return num_str; } // Driver code public static void main(String args[]) { String num = "91945"; int k = 3; System.out.println(minNum(num.toCharArray(), k)); } }// This code is contributed by AnkitRai01 |
Python3
# Python 3 implementation of the approach # Function to return the minimized number def minNum(num, k) : # Total digits in the number len_ = len(num) # If the string is empty or there # are no operations to perform if len_ == 0 or k == 0 : return num # "0" is a valid number if len_ == 1: return "0" # If the first digit is not already 1 then # update it to 1 and decrement k if num[0] != '1' : num = '1' + num[1:] k -= 1 i = 1 # While there are operations left # and the number can still be updated while k > 0 and i < len_ : # If the current digit is not already 0 # then update it to 0 and decrement k if num[i] != '0' : num = num[:i] + '0' + num[i + 1:] k -= 1 i += 1 # Return the minimised number return num # Driver code num = "91945"k = 3print(minNum(num, k)) # This code is contributed by divyamohan123 |
C#
// C# implementation of the approachusing System; class GFG{ // Function to return the minimized number static String minNum(char []num, int k) { // Total digits in the number int len = num.Length; // If the string is empty or there // are no operations to perform if (len == 0 || k == 0) { return String.Join("", num); } // "0" is a valid number if (len == 1) return "0"; // If the first digit is not already 1 then // update it to 1 and decrement k if (num[0] != '1') { num[0] = '1'; k--; } int i = 1; // While there are operations left // and the number can still be updated while (k > 0 && i < len) { // If the current digit is not already 0 // then update it to 0 and decrement k if (num[i] != '0') { num[i] = '0'; k--; } i++; } // Return the minimised number return String.Join("", num); } // Driver code public static void Main(String []args) { String num = "91945"; int k = 3; Console.WriteLine(minNum(num.ToCharArray(), k)); } }// This code is contributed by 29AjayKumar |
Javascript
<script>// Javascript implementation of the approach // Function to return the minimized number function minNum(num, k){ // Total digits in the number let len = num.length; // If the string is empty or there // are no operations to perform if (len == 0 || k == 0) { let num_str = num.join(""); return num_str; } // "0" is a valid number if (len == 1) return "0"; // If the first digit is not already 1 then // update it to 1 and decrement k if (num[0] != '1') { num[0] = '1'; k--; } let i = 1; // While there are operations left // and the number can still be updated while (k > 0 && i < len) { // If the current digit is not already 0 // then update it to 0 and decrement k if (num[i] != '0') { num[i] = '0'; k--; } i++; } let num_str = num.join(""); // Return the minimised number return num_str;}// Driver code let num = "91945";let k = 3;document.write(minNum(num.split(""), k));// This code is contributed by _saurabh_jaiswal.</script> |
10045
Time Complexity: O(min(k, |num|))
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!
