Friday, January 10, 2025
Google search engine
HomeData Modelling & AIMinimize the maximum element of N subarrays of size K

Minimize the maximum element of N subarrays of size K

Given an array arr[] and two integers N and K, the task is to choose non-overlapping N subarrays of size K such that the maximum element of all subarrays is minimum.
Note: If it is not possible to choose N such subarrays then return -1. 
Examples: 

Input: arr[] = {1, 10, 3, 10, 2}, N = 3, K = 1 
Output:
Explanation: 
The three non-overlapping subarrays are – 
Subarrays => {{1}, {2}, {3}} 
Maximum of these subarrays are => 3 
Input: arr[] = {7, 7, 7, 7, 12, 7, 7}, N = 2, K = 3 
Output: 12 
Explanation: 
The two non-overlapping subarrays are – 
Subarrays => {{7, 7, 7}, {7, 12, 7}} 
Maximum element of these subarrays are => 12 

Approach: The idea is to use a binary search. Below is the illustration of the binary search:

  • Search space: As we have to find the maximum element from the N subarrays which is one of the elements from the array. Therefore, the search space will be the minimum element to the maximum element of the array.
  • Function for binary search: The function for binary search is to find the count of K-sized array possible in with all the elements less than the given number which will be the middle of the search space.
  • Left Search Space: The condition when the count of K-sized subarrays possible is greater than or equal to N, Then the answer possible can lie in the left search space.
  • Right Search Space: The condition when the count of K-sized subarrays possible is less than N, Then the answer possible scan lies in the right search space.

Below is the implementation of the above approach:

C++




// C++ implementation to choose
// N subarrays of size K such that
// the maximum element of
// subarrays is minimum
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to choose
// N subarrays of size K such that
// the maximum element of
// subarrays is minimum
int minDays(vector<int>& arr,
                int n, int k)
{
    int l = arr.size(),
left = 1, right = 1e9;
 
    // Condition to check if it
    // is not possible to choose k
    // sized N subarrays
    if (n * k > l)
        return -1;
 
    // Using binary search
    while (left < right) {
 
        // calculating mid
        int mid = (left + right) / 2,
                 cnt = 0, product = 0;
                  
        // Loop to find the count of the
        // K sized subarrays possible with
        // elements less than  mid
        for (int j = 0; j < l; ++j) {
            if (arr[j] > mid) {
                cnt = 0;
            }
            else if (++cnt >= k) {
                product++;
                cnt = 0;
            }
        }
     
        // Condition to check if the
        // answer is in right subarray
        if (product < n) {
            left = mid + 1;
        }
        else {
            right = mid;
        }
    }
    return left;
}
 
// Driver Code
int main()
{
    vector<int> arr{ 1, 10, 3, 10, 2 };
    int n = 3, k = 1;
     
    // Function Call
    cout << minDays(arr, n, k) << endl;
    return 0;
}


Java




// Java implementation to choose
// N subarrays of size K such that
// the maximum element of
// subarrays is minimum
class GFG{
 
// Function to choose
// N subarrays of size K such that
// the maximum element of
// subarrays is minimum
static int minDays(int []arr,
                   int n, int k)
{
    int l = arr.length,
        left = 1, right = (int) 1e9;
 
    // Condition to check if it
    // is not possible to choose k
    // sized N subarrays
    if (n * k > l)
        return -1;
 
    // Using binary search
    while (left < right)
    {
 
        // calculating mid
        int mid = (left + right) / 2,
                   cnt = 0, product = 0;
                 
        // Loop to find the count of the
        // K sized subarrays possible with
        // elements less than mid
        for (int j = 0; j < l; ++j)
        {
            if (arr[j] > mid)
            {
                cnt = 0;
            }
            else if (++cnt >= k)
            {
                product++;
                cnt = 0;
            }
        }
     
        // Condition to check if the
        // answer is in right subarray
        if (product < n)
        {
            left = mid + 1;
        }
        else
        {
            right = mid;
        }
    }
    return left;
}
 
// Driver Code
public static void main(String[] args)
{
    int []arr = {1, 10, 3, 10, 2};
    int n = 3, k = 1;
     
    // Function Call
    System.out.print(minDays(arr, n, k) + "\n");
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 implementation to choose
# N subarrays of size K such that
# the maximum element of
# subarrays is minimum
  
# Function to choose
# N subarrays of size K such that
# the maximum element of
# subarrays is minimum
def minDays(arr, n, k):
 
    l = len(arr)
    left = 1
    right = 1e9
  
    # Condition to check if it
    # is not possible to choose k
    # sized N subarrays
    if (n * k > l):
        return -1
  
    # Using binary search
    while (left < right):
  
        # calculating mid
        mid = (left + right) // 2
        cnt = 0
        product = 0
                   
        # Loop to find the count of the
        # K sized subarrays possible with
        # elements less than  mid
        for j in range (l):
            if (arr[j] > mid):
                cnt = 0
            else:
                cnt += 1
                if (cnt >= k):
                    product += 1
                    cnt = 0
      
        # Condition to check if the
        # answer is in right subarray
        if (product < n):
            left = mid + 1
        else:
            right = mid
      
    return left
  
# Driver Code
if __name__ == "__main__":
    arr = [1, 10, 3, 10, 2]
    n = 3
    k = 1
      
    # Function Call
    print (int(minDays(arr, n, k)))
     
# This code is contributed by Chitranayal


C#




// C# implementation to choose N 
// subarrays of size K such that
// the maximum element of
// subarrays is minimum
using System;
class GFG{
 
// Function to choose N subarrays 
// of size K such that the maximum
// element of subarrays is minimum
static int minDays(int []arr,
                   int n, int k)
{
    int l = arr.Length;
    int left = 1, right = (int)1e9;
 
    // Condition to check if it
    // is not possible to choose k
    // sized N subarrays
    if (n * k > l)
        return -1;
 
    // Using binary search
    while (left < right)
    {
 
        // Calculating mid
        int mid = (left + right) / 2,
                   cnt = 0, product = 0;
                 
        // Loop to find the count of the
        // K sized subarrays possible with
        // elements less than mid
        for(int j = 0; j < l; ++j)
        {
           if (arr[j] > mid)
           {
               cnt = 0;
           }
           else if (++cnt >= k)
           {
               product++;
               cnt = 0;
           }
        }
     
        // Condition to check if the
        // answer is in right subarray
        if (product < n)
        {
            left = mid + 1;
        }
        else
        {
            right = mid;
        }
    }
    return left;
}
 
// Driver Code
public static void Main(String[] args)
{
    int []arr = { 1, 10, 3, 10, 2 };
    int n = 3, k = 1;
     
    // Function Call
    Console.Write(minDays(arr, n, k) + "\n");
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
// Javascript implementation to choose
// N subarrays of size K such that
// the maximum element of
// subarrays is minimum
 
// Function to choose
// N subarrays of size K such that
// the maximum element of
// subarrays is minimum
function minDays(arr, n, k)
{
    let l = arr.length,
left = 1, right = 1000000000;
 
    // Condition to check if it
    // is not possible to choose k
    // sized N subarrays
    if (n * k > l)
        return -1;
 
    // Using binary search
    while (left < right) {
 
        // calculating mid
        let mid = parseInt((left + right) / 2),
                 cnt = 0, product = 0;
                  
        // Loop to find the count of the
        // K sized subarrays possible with
        // elements less than  mid
        for (let j = 0; j < l; ++j) {
            if (arr[j] > mid) {
                cnt = 0;
            }
            else if (++cnt >= k) {
                product++;
                cnt = 0;
            }
        }
     
        // Condition to check if the
        // answer is in right subarray
        if (product < n) {
            left = mid + 1;
        }
        else {
            right = mid;
        }
    }
    return left;
}
 
// Driver Code
    let arr = [ 1, 10, 3, 10, 2 ];
    let n = 3, k = 1;
     
    // Function Call
    document.write(minDays(arr, n, k));
 
</script>


Output: 

3

 

Time Complexity: O(N*logN)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments