Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIMinimize the maximum difference of adjacent elements after at most K insertions

Minimize the maximum difference of adjacent elements after at most K insertions

Given an array of N elements, the task is to minimize the maximum difference of adjacent elements by inserting at most K elements in the array.
Examples: 
 

Input: arr = [2, 6, 8] K = 1 
Output:
Explanation: 
After insertion of 4 in between 2 and 6, the array becomes [2, 4, 6, 8]. In this case the maximum difference between any adjacent element is 2, which is the minimum that can be.
Input: arr = [3, 12] K = 2 
Output:
Explanation: 
After insertion of 6 and 9 in between 3 and 12, the array becomes [3, 6, 9, 12]. In this case the maximum difference between any adjacent element is 3, which is the minimum that can be. 
 

 

Approach: In order to solve this problem, we are using the following Binary Search based approach:
 

  1. Find the maximum difference between any two adjacent element in the array and store it in a variable, say worst.
  2. Search from best(1 initially) to worst and for every mid value find the number of insertions required.
  3. Whenever the number of insertions is greater than K for a particular value of mid, search between [mid + 1, worst], that is the higher half. Otherwise search between [best, mid-1], that is the lower half to check if the maximum difference can be further minimized with at most K insertions.
  4. The final worst value after termination of the loop gives the answer.

Below code is the implementation of the above approach:
 

C++




// C++ Program to find the minimum of maximum
// differerence between adjacent elements
// after at most K insertions
 
#include <bits/stdc++.h>
using namespace std;
 
int minMaxDiff(int arr[], int n, int k)
{
    int max_adj_dif = INT_MIN;
    // Calculate the maximum
    // adjacent difference
    for (int i = 0; i < n - 1; i++)
        max_adj_dif
            = max(max_adj_dif,
                  abs(arr[i] - arr[i + 1]));
 
    // If the maximum adjacent
    // difference is already zero
    if (max_adj_dif == 0)
        return 0;
 
    // best and worst specifies
    // range of the maximum
    // adjacent difference
    int best = 1;
    int worst = max_adj_dif;
    int mid, required;
 
    while (best < worst) {
 
        mid = (best + worst) / 2;
 
        // To store the no of insertions
        // required for respective
        // values of mid
        required = 0;
 
        for (int i = 0; i < n - 1; i++) {
 
            required += (abs(arr[i]
                             - arr[i + 1])
                         - 1)
                        / mid;
        }
 
        // If the number of insertions
        // required exceeds K
        if (required > k)
            best = mid + 1;
 
        // Otherwise
        else
            worst = mid;
    }
 
    return worst;
}
 
// Driver code
int main()
{
    int arr[] = { 3, 12, 25, 50 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 7;
 
    cout << minMaxDiff(arr, n, k);
    return 0;
}


Java




// Java program to find the minimum
// of maximum difference between
// adjacent elements after at most
// K insertions
import java.util.*;
 
class GFG{
     
static int minMaxDiff(int arr[], int n, int k)
{
    int max_adj_dif = Integer.MIN_VALUE;
     
    // Calculate the maximum
    // adjacent difference
    for(int i = 0; i < n - 1; i++)
        max_adj_dif = Math.max(max_adj_dif,
                      Math.abs(arr[i] -
                               arr[i + 1]));
 
    // If the maximum adjacent
    // difference is already zero
    if (max_adj_dif == 0)
        return 0;
 
    // best and worst specifies
    // range of the maximum
    // adjacent difference
    int best = 1;
    int worst = max_adj_dif;
    int mid, required;
 
    while (best < worst)
    {
        mid = (best + worst) / 2;
 
        // To store the no of insertions
        // required for respective
        // values of mid
        required = 0;
 
        for(int i = 0; i < n - 1; i++)
        {
            required += (Math.abs(arr[i] -
                                  arr[i + 1]) -
                                     1) / mid;
        }
 
        // If the number of insertions
        // required exceeds K
        if (required > k)
            best = mid + 1;
 
        // Otherwise
        else
            worst = mid;
    }
    return worst;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 3, 12, 25, 50 };
    int n = arr.length;
    int k = 7;
 
    System.out.println(minMaxDiff(arr, n, k));
}
}
 
// This code is contributed by ANKITKUMAR34


Python 3




# Python3 program to find the minimum
# of maximum difference between
# adjacent elements after at most
# K insertions
def minMaxDiff(arr, n, k):
 
    max_adj_dif = float('-inf');
     
    # Calculate the maximum
    # adjacent difference
    for i in range(n - 1):
        max_adj_dif = max(max_adj_dif,
                          abs(arr[i] -
                              arr[i + 1]));
 
    # If the maximum adjacent
    # difference is already zero
    if (max_adj_dif == 0):
        return 0;
 
    # best and worst specifies
    # range of the maximum
    # adjacent difference
    best = 1;
    worst = max_adj_dif;
     
    while (best < worst):
        mid = (best + worst) // 2;
 
        # To store the no of insertions
        # required for respective
        # values of mid
        required = 0
 
        for i in range(n - 1):
            required += (abs(arr[i] -
                             arr[i + 1]) - 1) // mid
             
        # If the number of insertions
        # required exceeds K
        if (required > k):
            best = mid + 1;
 
        # Otherwise
        else:
            worst = mid
 
    return worst
 
# Driver code
arr = [ 3, 12, 25, 50 ]
n = len(arr)
k = 7
 
print(minMaxDiff(arr, n, k))
 
# This code is contributed by ANKITKUMAR34


C#




// C# program to find the minimum
// of maximum difference between
// adjacent elements after at most
// K insertions
using System;
class GFG{
     
static int minMaxDiff(int []arr, int n, int k)
{
    int max_adj_dif = int.MinValue;
     
    // Calculate the maximum
    // adjacent difference
    for(int i = 0; i < n - 1; i++)
        max_adj_dif = Math.Max(max_adj_dif,
                      Math.Abs(arr[i] -
                               arr[i + 1]));
 
    // If the maximum adjacent
    // difference is already zero
    if (max_adj_dif == 0)
        return 0;
 
    // best and worst specifies
    // range of the maximum
    // adjacent difference
    int best = 1;
    int worst = max_adj_dif;
    int mid, required;
 
    while (best < worst)
    {
        mid = (best + worst) / 2;
 
        // To store the no of insertions
        // required for respective
        // values of mid
        required = 0;
 
        for(int i = 0; i < n - 1; i++)
        {
            required += (Math.Abs(arr[i] -
                                  arr[i + 1]) -
                                      1) / mid;
        }
 
        // If the number of insertions
        // required exceeds K
        if (required > k)
            best = mid + 1;
 
        // Otherwise
        else
            worst = mid;
    }
    return worst;
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 3, 12, 25, 50 };
    int n = arr.Length;
    int k = 7;
 
    Console.WriteLine(minMaxDiff(arr, n, k));
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
// javascript Program to find the minimum of maximum
// differerence between adjacent elements
// after at most K insertions
 
function minMaxDiff(arr, n, k)
{
    var max_adj_dif = -1000000000;
    // Calculate the maximum
    // adjacent difference
    for (var i = 0; i < n - 1; i++)
        max_adj_dif
            = Math.max(max_adj_dif,
                  Math.abs(arr[i] - arr[i + 1]));
 
    // If the maximum adjacent
    // difference is already zero
    if (max_adj_dif == 0)
        return 0;
 
    // best and worst specifies
    // range of the maximum
    // adjacent difference
    var best = 1;
    var worst = max_adj_dif;
    var mid, required;
 
    while (best < worst) {
 
        mid = (best + worst) / 2;
 
        // To store the no of insertions
        // required for respective
        // values of mid
        required = 0;
 
        for (var i = 0; i < n - 1; i++) {
 
            required += parseInt((Math.abs(arr[i]
                             - arr[i + 1])
                         - 1)
                        / mid);
        }
 
        // If the number of insertions
        // required exceeds K
        if (required > k)
            best = mid + 1;
 
        // Otherwise
        else
            worst = mid;
    }
 
    return worst;
}
 
// Driver code
var arr = [ 3, 12, 25, 50 ];
var n = arr.length;
var k = 7;
document.write( minMaxDiff(arr, n, k));
 
</script>


Output: 

5

 

Time Complexity: O(n * log n)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments