Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMinimize sum of absolute difference between all pairs of array elements by...

Minimize sum of absolute difference between all pairs of array elements by decrementing and incrementing pairs by 1

Given an array arr[] ( 1-based indexing ) consisting of N integers, the task is to find the minimum sum of the absolute difference between all pairs of array elements by decrementing and incrementing any pair of elements by 1 any number of times.

Examples:

Input: arr[] = {1, 2, 3}
Output: 0
Explanation:
Modify the array elements by  performing the following operations:

  • Choose the pairs of element (arr[1], arr[3]) and incrementing and decrementing the pairs modifies the array to {2, 2, 2}.

After the above operations, the sum of the absolute differences is  |2 – 2| + |2 – 2| + |2 – 2| = 0. Therefore, print 0.

Input: arr[] = {0, 1, 0, 1}
Output: 4

Approach: The given problem can be solved by using a Greedy Approach. It can be observed that to minimize the sum of the absolute difference between every pair of array elements arr[], the idea to make every array element closed to each other. Follow the steps below to solve the problem:

  • Find the sum of the array elements arr[] and store it in a variable, say sum.
  • Now, if the value of sum % N is 0, then print 0 as all the array elements can be made equal and the resultant value of the expression is always 0. Otherwise, find the value of sum % N and store it in a variable, say R.
  • Now, if all the array elements are sum/N, then we can make R number of array elements as 1 and the rest of the array elements as 0 to minimize the resultant value.
  • After the above steps, the minimum sum of the absolute difference is given by R*(N – R).

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum value
// of the sum of absolute difference
// between all pairs of arrays
int minSumDifference(int ar[], int n)
{
    // Stores the sum of array elements
    int sum = 0;
 
    // Find the sum of array element
    for (int i = 0; i < n; i++)
        sum += ar[i];
 
    // Store the value of sum%N
    int rem = sum % n;
 
    // Return the resultant value
    return rem * (n - rem);
}
 
// Driver Code
int main()
{
    int arr[] = { 3, 6, 8, 5, 2,
                  1, 11, 7, 10, 4 };
    int N = sizeof(arr) / sizeof(int);
    cout << minSumDifference(arr, N);
 
    return 0;
}


Java




// Java program for the above approach
class GFG {
 
    // Function to find the minimum value
    // of the sum of absolute difference
    // between all pairs of arrays
    public static int minSumDifference(int ar[], int n) {
        // Stores the sum of array elements
        int sum = 0;
 
        // Find the sum of array element
        for (int i = 0; i < n; i++)
            sum += ar[i];
 
        // Store the value of sum%N
        int rem = sum % n;
 
        // Return the resultant value
        return rem * (n - rem);
    }
 
    // Driver Code
    public static void main(String args[]) {
        int[] arr = { 3, 6, 8, 5, 2, 1, 11, 7, 10, 4 };
        int N = arr.length;
        System.out.println(minSumDifference(arr, N));
 
    }
}
 
// This code is contributed by gfgking.


Python3




# Python 3 program for the above approach
 
# Function to find the minimum value
# of the sum of absolute difference
# between all pairs of arrays
def minSumDifference(ar, n):
    # Stores the sum of array elements
    sum = 0
 
    # Find the sum of array element
    for i in range(n):
        sum += ar[i]
 
    # Store the value of sum%N
    rem = sum % n
 
    # Return the resultant value
    return rem * (n - rem)
 
# Driver Code
if __name__ == '__main__':
    arr = [3, 6, 8, 5, 2, 1, 11, 7, 10, 4]
    N = len(arr)
    print(minSumDifference(arr, N))
     
    # This code is contributed by ipg2016107.


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to find the minimum value
// of the sum of absolute difference
// between all pairs of arrays
public static int minSumDifference(int[] ar, int n)
{
     
    // Stores the sum of array elements
    int sum = 0;
 
    // Find the sum of array element
    for(int i = 0; i < n; i++)
        sum += ar[i];
 
    // Store the value of sum%N
    int rem = sum % n;
 
    // Return the resultant value
    return rem * (n - rem);
}
 
// Driver Code
public static void Main()
{
    int[] arr = { 3, 6, 8, 5, 2,
                  1, 11, 7, 10, 4 };
    int N = arr.Length;
     
    Console.Write(minSumDifference(arr, N));
}
}
 
// This code is contributed by sanjoy_62


Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to find the minimum value
// of the sum of absolute difference
// between all pairs of arrays
function minSumDifference(ar, n) {
  // Stores the sum of array elements
  let sum = 0;
 
  // Find the sum of array element
  for (let i = 0; i < n; i++) sum += ar[i];
 
  // Store the value of sum%N
  let rem = sum % n;
 
  // Return the resultant value
  return rem * (n - rem);
}
 
// Driver Code
 
let arr = [3, 6, 8, 5, 2, 1, 11, 7, 10, 4];
let N = arr.length;
document.write(minSumDifference(arr, N));
 
</script>


Output: 

21

 

Time  Complexity: O(N)
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments