Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AIMinimize Steps required to obtain Sorted Order of an Array

Minimize Steps required to obtain Sorted Order of an Array

Given an array arr[] consisting of a permutation of integers [1, N], derived by rearranging the sorted order [1, N], the task is to find the minimum number of steps after which the sorted order [1, N] is repeated, by repeating the same process by which arr[] is obtained from the sorted sequence at each step.

Examples: 

Input: arr[ ] = {3, 6, 5, 4, 1, 2} 
Output:
Explanation: 
Increasing Permutation: {1, 2, 3, 4, 5, 6} 
Step 1 : arr[] = {3, 6, 5, 4, 1, 2} (Given array) 
Step 2 : arr[] = {5, 2, 1, 4, 3, 6} 
Step 3 : arr[] = {1, 6, 3, 4, 5, 2} 
Step 4 : arr[] = {3, 2, 5, 4, 1, 6} 
Step 5 : arr[] = {5, 6, 1, 4, 3, 2} 
Step 6 : arr[] = {1, 2, 3, 4, 5, 6} (Increasing Permutation) 
Therefore, the total number of steps required are 6.
Input: arr[ ] = [5, 1, 4, 3, 2] 
Output:

Approach: 
This problem can be solved simply by using the concept of Direct Addressing. Follow the steps given below to solve the problem:  

  • Initialize an array dat[] for direct addressing.
  • Iterate over [1, N] and calculate the difference of the current index of every element from its index in the sorted sequence.
  • Calculate the LCM of the array dat[].
  • Now, print the obtained LCM as the minimum steps required to obtain the sorted order.

Below is the implementation of the above approach: 

C++14




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find
// GCD of two numbers
int gcd(int a, int b)
{
    if (b == 0)
        return a;
 
    return gcd(b, a % b);
}
 
// Function to calculate the
// LCM of array elements
int findlcm(int arr[], int n)
{
    // Initialize result
    int ans = 1;
 
    for (int i = 1; i <= n; i++)
        ans = (((arr[i] * ans))
            / (gcd(arr[i], ans)));
 
    return ans;
}
 
// Function to find minimum steps
// required to obtain sorted sequence
void minimumSteps(int arr[], int n)
{
 
    // Initialize dat[] array for
    // Direct Address Table.
    int i, dat[n + 1];
 
    for (i = 1; i <= n; i++)
 
        dat[arr[i - 1]] = i;
 
    int b[n + 1], j = 0, c;
 
    // Calculating steps required
    // for each element to reach
    // its sorted position
    for (i = 1; i <= n; i++) {
        c = 1;
        j = dat[i];
        while (j != i) {
            c++;
            j = dat[j];
        }
        b[i] = c;
    }
 
    // Calculate LCM of the array
    cout << findlcm(b, n);
}
 
// Driver Code
int main()
{
 
    int arr[] = { 5, 1, 4, 3, 2, 7, 6 };
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    minimumSteps(arr, N);
 
    return 0;
}


Java




// Java program to implement
// the above approach
class GFG{
     
// Function to find
// GCD of two numbers
static int gcd(int a, int b)
{
    if (b == 0)
        return a;
 
    return gcd(b, a % b);
}
 
// Function to calculate the
// LCM of array elements
static int findlcm(int arr[], int n)
{
     
    // Initialize result
    int ans = 1;
 
    for(int i = 1; i <= n; i++)
        ans = (((arr[i] * ans)) /
            (gcd(arr[i], ans)));
 
    return ans;
}
 
// Function to find minimum steps
// required to obtain sorted sequence
static void minimumSteps(int arr[], int n)
{
 
    // Initialize dat[] array for
    // Direct Address Table.
    int i;
    int dat[] = new int[n + 1];
 
    for(i = 1; i <= n; i++)
        dat[arr[i - 1]] = i;
 
    int b[] = new int[n + 1];
    int j = 0, c;
 
    // Calculating steps required
    // for each element to reach
    // its sorted position
    for(i = 1; i <= n; i++)
    {
        c = 1;
        j = dat[i];
         
        while (j != i)
        {
            c++;
            j = dat[j];
        }
        b[i] = c;
    }
 
    // Calculate LCM of the array
    System.out.println(findlcm(b, n));
}
 
// Driver code   
public static void main(String[] args)
{
    int arr[] = { 5, 1, 4, 3, 2, 7, 6 };
 
    int N = arr.length;
 
    minimumSteps(arr, N);
}
}
 
// This code is contributed by rutvik_56


Python3




# Python3 program to implement
# the above approach
 
# Function to find
# GCD of two numbers
def gcd(a, b):
 
    if(b == 0):
        return a
 
    return gcd(b, a % b)
 
# Function to calculate the
# LCM of array elements
def findlcm(arr, n):
 
    # Initialize result
    ans = 1
 
    for i in range(1, n + 1):
        ans = ((arr[i] * ans) //
            (gcd(arr[i], ans)))
 
    return ans
 
# Function to find minimum steps
# required to obtain sorted sequence
def minimumSteps(arr, n):
 
    # Initialize dat[] array for
    # Direct Address Table.
    dat = [0] * (n + 1)
 
    for i in range(1, n + 1):
        dat[arr[i - 1]] = i
 
    b = [0] * (n + 1)
    j = 0
 
    # Calculating steps required
    # for each element to reach
    # its sorted position
    for i in range(1, n + 1):
        c = 1
        j = dat[i]
        while(j != i):
            c += 1
            j = dat[j]
 
        b[i] = c
 
    # Calculate LCM of the array
    print(findlcm(b, n))
 
# Driver Code
arr = [ 5, 1, 4, 3, 2, 7, 6 ]
 
N = len(arr)
 
minimumSteps(arr, N)
 
# This code is contributed by Shivam Singh


C#




// C# program to implement
// the above approach
using System;
 
class GFG{
     
// Function to find
// GCD of two numbers
static int gcd(int a, int b)
{
    if (b == 0)
        return a;
 
    return gcd(b, a % b);
}
 
// Function to calculate the
// LCM of array elements
static int findlcm(int []arr, int n)
{
     
    // Initialize result
    int ans = 1;
 
    for(int i = 1; i <= n; i++)
        ans = (((arr[i] * ans)) /
            (gcd(arr[i], ans)));
 
    return ans;
}
 
// Function to find minimum steps
// required to obtain sorted sequence
static void minimumSteps(int []arr, int n)
{
 
    // Initialize dat[] array for
    // Direct Address Table.
    int i;
    int []dat = new int[n + 1];
 
    for(i = 1; i <= n; i++)
        dat[arr[i - 1]] = i;
 
    int []b = new int[n + 1];
    int j = 0, c;
 
    // Calculating steps required
    // for each element to reach
    // its sorted position
    for(i = 1; i <= n; i++)
    {
        c = 1;
        j = dat[i];
         
        while (j != i)
        {
            c++;
            j = dat[j];
        }
        b[i] = c;
    }
 
    // Calculate LCM of the array
    Console.WriteLine(findlcm(b, n));
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 5, 1, 4, 3, 2, 7, 6 };
 
    int N = arr.Length;
 
    minimumSteps(arr, N);
}
}
 
// This code is contributed by gauravrajput1


Javascript




<script>
// JavaScript program for the above approach
 
// Function to find
// GCD of two numbers
function gcd(a, b)
{
    if (b == 0)
        return a;
   
    return gcd(b, a % b);
}
   
// Function to calculate the
// LCM of array elements
function findlcm(arr, n)
{
       
    // Initialize result
    let ans = 1;
   
    for(let i = 1; i <= n; i++)
        ans = (((arr[i] * ans)) /
            (gcd(arr[i], ans)));
   
    return ans;
}
   
// Function to find minimum steps
// required to obtain sorted sequence
function minimumSteps(arr, n)
{
   
    // Initialize dat[] array for
    // Direct Address Table.
    let i;
    let dat = Array.from({length: n+1}, (_, i) => 0);
   
    for(i = 1; i <= n; i++)
        dat[arr[i - 1]] = i;
   
    let b = Array.from({length: n+1}, (_, i) => 0);
    let j = 0, c;
   
    // Calculating steps required
    // for each element to reach
    // its sorted position
    for(i = 1; i <= n; i++)
    {
        c = 1;
        j = dat[i];
           
        while (j != i)
        {
            c++;
            j = dat[j];
        }
        b[i] = c;
    }
   
    // Calculate LCM of the array
    document.write(findlcm(b, n));
}
     
// Driver Code   
     
    let arr = [ 5, 1, 4, 3, 2, 7, 6 ];
   
    let N = arr.length;
   
    minimumSteps(arr, N);
                   
</script>


Output: 

6

Time Complexity: O(NlogN) 
Auxiliary Space: O(N)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments