Saturday, January 4, 2025
Google search engine
HomeData Modelling & AIMinimize operations to transform A to B by multiplying by 2 or...

Minimize operations to transform A to B by multiplying by 2 or appending 1 to it

Given two numbers A and B, the task is to find the minimum number of the following operations to transform A to B:

  1. Multiply the current number by 2 (i.e. replace the number X by 2X)
  2. Append the digit 1 to the right of the current number (i.e. replace the number X by 10X?+?1).

Print -1 if it is not possible to transform A to B.

Examples:

Input: A = 2, B = 162
Output: 4
Explanation: 
Operation 1: Change A to 2*A, so A=2*2=4
Operation 2: Change A to 2*A, so A=2*4=8.
Operation 3: Change A to 10*A+1, so A=10*8+1=81
Operation 4: Change A to 2*A, so A=2*81=162

Input: A = 4, B = 42
Output: -1

Approach: This problem can be solved by recursively generating all possible solutions and then choosing the minimum out of those. Now, to solve this problem, follow the below steps:

  1. Create a recursive function minOperation which will accept three parameters that are current number (cur), target number (B) and a map (dp) to memoise the returned result. This function will return the number of minimum operations required to transform the current number to the target number.
  2. Initially pass A as cur, B and a empty map dp in minOperations.
  3. Now in each recursive call:
    1. Check if cur is greater than B, if it is then return INT_MAX as it is not possible to transform the current number to B.
    2. Check if cur is equal to B, if it is then return 0.
    3. Also check if the result of this function call is already stored in map dp. If it is, then return it from there.
    4. Otherwise, call this function again for (cur* 2) and (cur*10+1) and return the minimum result out of these two after memoising.
  4. Now, if the initial call returns INT_MAX, then print -1 as it is not possible to transform A to B. Otherwise the answer is the integer returned from this function call.

Below is the implementation of the above approach:

C++




// C++ code for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find
// the minimum number of operations
// needed to transform A to B
int minOperations(int cur, int B,
                  unordered_map<int, int>& dp)
{
 
    // If current number
    // is greater than target
    if (cur > B) {
        return INT_MAX;
    }
 
    // if current number
    // is equal to the target
    if (cur == B) {
        return 0;
    }
 
    // If the number of minimum
    // operations required to
    // change the current number
    // to the target number
    // is already memoised
    if (dp.count(cur)) {
        return dp[cur];
    }
 
    // Minimum number of operations
    // required if the current element
    // gets multiplied by 2
    int ans1 = minOperations(cur * 2, B, dp);
 
    // Minimum number of operations
    // required if the 1 is appended to
    // the right of the current element
    int ans2 = minOperations(cur * 10 + 1, B, dp);
 
    // If it is not possible
    // to reach the target value
    // from the current element
    if (min(ans1, ans2) == INT_MAX) {
        return dp[cur] = INT_MAX;
    }
 
    // Returning the minimum
    // number of operations
    return dp[cur] = min(ans1, ans2) + 1;
}
 
// Driver Code
int main()
{
    int A = 2, B = 162;
    unordered_map<int, int> dp;
    int ans = minOperations(A, B, dp);
 
    // If A cannot be transformed to B
    if (ans == INT_MAX) {
        cout << -1;
    }
 
    else {
        cout << ans;
    }
}


Java




// Java code for the above approach
import java.util.HashMap;
class GFG {
 
  // Function to find
  // the minimum number of operations
  // needed to transform A to B
  static int minOperations(int cur, int B, HashMap<Integer, Integer> dp) {
 
    // If current number
    // is greater than target
    if (cur > B) {
      return Integer.MAX_VALUE;
    }
 
    // if current number
    // is equal to the target
    if (cur == B) {
      return 0;
    }
 
    // If the number of minimum
    // operations required to
    // change the current number
    // to the target number
    // is already memoised
    if (dp.containsKey(cur)) {
      return dp.get(cur);
    }
 
    // Minimum number of operations
    // required if the current element
    // gets multiplied by 2
    int ans1 = minOperations(cur * 2, B, dp);
 
    // Minimum number of operations
    // required if the 1 is appended to
    // the right of the current element
    int ans2 = minOperations(cur * 10 + 1, B, dp);
 
    // If it is not possible
    // to reach the target value
    // from the current element
    if (Math.min(ans1, ans2) == Integer.MAX_VALUE) {
      dp.put(cur, Integer.MAX_VALUE);
      return dp.get(cur);
    }
 
    // Returning the minimum
    // number of operations
    dp.put(cur, Math.min(ans1, ans2) + 1);
    return dp.get(cur);
  }
 
  // Driver Code
  public static void main(String args[])
  {
    int A = 2, B = 162;
    HashMap<Integer, Integer> dp = new HashMap<Integer, Integer>();
    int ans = minOperations(A, B, dp);
 
    // If A cannot be transformed to B
    if (ans == Integer.MAX_VALUE) {
      System.out.println(-1);
    }
 
    else {
      System.out.println(ans);
    }
  }
}
 
// This code is contributed by gfgking.


Python3




# Python 3 code for the above approach
import sys
# Function to find
# the minimum number of operations
# needed to transform A to B
 
 
def minOperations(cur, B,
                  dp):
 
    # If current number
    # is greater than target
    if (cur > B):
        return sys.maxsize
 
    # if current number
    # is equal to the target
    if (cur == B):
        return 0
 
    # If the number of minimum
    # operations required to
    # change the current number
    # to the target number
    # is already memoised
    if (cur in dp):
        return dp[cur]
 
    # Minimum number of operations
    # required if the current element
    # gets multiplied by 2
    ans1 = minOperations(cur * 2, B, dp)
 
    # Minimum number of operations
    # required if the 1 is appended to
    # the right of the current element
    ans2 = minOperations(cur * 10 + 1, B, dp)
 
    # If it is not possible
    # to reach the target value
    # from the current element
    if (min(ans1, ans2) == sys.maxsize):
        dp[cur] = sys.maxsize
        return dp[cur]
 
    # Returning the minimum
    # number of operations
    dp[cur] = min(ans1, ans2) + 1
    return dp[cur]
 
 
# Driver Code
if __name__ == "__main__":
 
    A = 2
    B = 162
    dp = {}
    ans = minOperations(A, B, dp)
 
    # If A cannot be transformed to B
    if (ans == sys.maxsize):
        print(-1)
    else:
        print(ans)
 
        # This code is contributed by ukasp.


C#




// C# code for the above approach
using System;
using System.Collections.Generic;
class GFG {
 
    // Function to find
    // the minimum number of operations
    // needed to transform A to B
    static int minOperations(int cur, int B,
                             Dictionary<int, int> dp)
    {
 
        // If current number
        // is greater than target
        if (cur > B) {
            return Int32.MaxValue;
        }
 
        // if current number
        // is equal to the target
        if (cur == B) {
            return 0;
        }
 
        // If the number of minimum
        // operations required to
        // change the current number
        // to the target number
        // is already memoised
        if (dp.ContainsKey(cur)) {
            return dp[cur];
        }
 
        // Minimum number of operations
        // required if the current element
        // gets multiplied by 2
        int ans1 = minOperations(cur * 2, B, dp);
 
        // Minimum number of operations
        // required if the 1 is appended to
        // the right of the current element
        int ans2 = minOperations(cur * 10 + 1, B, dp);
 
        // If it is not possible
        // to reach the target value
        // from the current element
        if (Math.Min(ans1, ans2) == Int32.MaxValue) {
            dp[cur] = Int32.MaxValue;
            return dp[cur];
        }
 
        // Returning the minimum
        // number of operations
        dp[cur] = Math.Min(ans1, ans2) + 1;
        return dp[cur];
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        int A = 2, B = 162;
        Dictionary<int, int> dp
            = new Dictionary<int, int>();
        int ans = minOperations(A, B, dp);
 
        // If A cannot be transformed to B
        if (ans == Int32.MaxValue) {
            Console.WriteLine(-1);
        }
 
        else {
            Console.WriteLine(ans);
        }
    }
}
 
// This code is contributed by gaurav01.


Javascript




<script>
      // JavaScript code for the above approach
 
      // Function to find
      // the minimum number of operations
      // needed to transform A to B
      function minOperations(cur, B,
          dp) {
 
          // If current number
          // is greater than target
          if (cur > B) {
              return Number.MAX_VALUE;
          }
 
          // if current number
          // is equal to the target
          if (cur == B) {
              return 0;
          }
 
          // If the number of minimum
          // operations required to
          // change the current number
          // to the target number
          // is already memoised
          if (dp[cur] != 0) {
              return dp[cur];
          }
 
          // Minimum number of operations
          // required if the current element
          // gets multiplied by 2
          let ans1 = minOperations(cur * 2, B, dp);
 
          // Minimum number of operations
          // required if the 1 is appended to
          // the right of the current element
          let ans2 = minOperations(cur * 10 + 1, B, dp);
 
          // If it is not possible
          // to reach the target value
          // from the current element
          if (Math.min(ans1, ans2) == Number.MAX_VALUE) {
              return dp[cur] = Number.MAX_VALUE;
          }
 
          // Returning the minimum
          // number of operations
          return dp[cur] = Math.min(ans1, ans2) + 1;
      }
 
      // Driver Code
      let A = 2, B = 162;
      let dp = new Array(100000).fill(0);
      let ans = minOperations(A, B, dp);
 
      // If A cannot be transformed to B
      if (ans == Number.MAX_VALUE) {
          document.write(-1);
      }
 
      else {
          document.write(ans);
      }
 
// This code is contributed by Potta Lokesh
  </script>


Output

4

 
 Time Complexity: O(log2 B*log10 B) 
Auxiliary Space: O(max(log2 B, log10 B))

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments