Given two arrays A[] and B[] consisting of N and M integers, the task is to find the minimum number of operations required to make the minimum element of the array A[] at least the maximum element of the array B[] such that in each operation any array element A[] can be incremented by 1 or any array element B[] can be decremented by 1.
Examples:
Input: A[] = {2, 3}, B[] = {3, 5}
Output: 3
Explanation:
Following are the operations performed:
- Increase the value of A[1] by 1 modifies the array A[] = {3, 3}.
- Decrease the value of B[2] by 1 modifies the array B[] = {3, 4}.
- Decrease the value of B[2] by 1 modifies the array B[] = {3, 3}.
After the above operations, the minimum elements of the array A[] is 3 which is greater than or equal to the maximum element of the array B[] is 3. Therefore, the total number of operations is 3.
Input: A[] = {1, 2, 3}, B[] = {4}
Output: 3
Approach: The problem can be solved by using the Greedy Approach. Follow the steps below to solve the given problem:
- Sort the array A[] in increasing order.
- Sort the array B[] in decreasing order.
- Traverse both of the arrays while A[i] < B[i], in order to make all elements of the arrays A[] and B[], till index i, equal, say x, then the total number of operations is given by:
=> (B[0] + B[1] + … + B[i]) – i*x + (A[0] + A[1] + … + A[i]) + i*x
=> (B[0] – A[0]) + (B[1] – A[1]) + … + (B[i] – A[i]).
- Traverse both the arrays until the value of A[i] is smaller than B[i], and the value of (B[i] – A[i]) to the variable, say ans.
- After completing the above steps, print the value of ans as the minimum number of operations required.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; #define ll long long Â
// Comparator function bool cmp(ll a, ll b) { return a > b; } Â
// Function to find the minimum number // of operation required to satisfy the // given conditions int FindMinMoves(vector<ll> A, vector<ll> B) { Â Â Â Â int n, m; Â Â Â Â n = A.size(); Â Â Â Â m = B.size(); Â
    // sort the array A and B in the     // ascending and descending order     sort(A.begin(), A.end());     sort(B.begin(), B.end(), cmp); Â
    ll ans = 0; Â
    // Iterate over both the arrays     for ( int i = 0; i < min(m, n)                     && A[i] < B[i];          ++i) { Â
        // Add the difference to the         // variable answer         ans += (B[i] - A[i]);     } Â
    // Return the resultant operations     return ans; } Â
// Driver Code int main() { Â Â Â Â vector<ll> A = { 2, 3 }; Â Â Â Â vector<ll> B = { 3, 5 }; Â Â Â Â cout << FindMinMoves(A, B); Â
    return 0; } |
Java
// Java program for the above approach import java.util.Arrays; Â
class GFG{ Â Â Â Â Â // Comparator function public static boolean cmp( int a, int b) { Â Â Â Â return a > b; } Â
// Function to find the minimum number // of operation required to satisfy the // given conditions public static int FindMinMoves( int [] A, int [] B) { Â Â Â Â int n, m; Â Â Â Â n = A.length; Â Â Â Â m = B.length; Â
    // Sort the array A and B in the     // ascending and descending order     Arrays.sort(A);     Arrays.sort(B); Â
    int ans = 0 ; Â
    // Iterate over both the arrays     for ( int i = 0 ;             i < Math.min(m, n) && A[i] < B[i]; ++i)     {                  // Add the difference to the         // variable answer         ans += (B[i] - A[i]);     } Â
    // Return the resultant operations     return ans; } Â
// Driver Code public static void main(String args[]) { Â Â Â Â int [] A = { 2 , 3 }; Â Â Â Â int [] B = { 3 , 5 }; Â Â Â Â Â Â Â Â Â System.out.println(FindMinMoves(A, B)); } } Â
// This code is contributed by _saurabh_jaiswal |
Python3
# Python3 program for the above approach Â
# Function to find the minimum number # of operation required to satisfy the # given conditions def FindMinMoves(A, B): Â Â Â Â Â Â Â Â Â n = len (A) Â Â Â Â m = len (B) Â
    # sort the array A and B in the     # ascending and descending order     A.sort()     B.sort(reverse = True )     ans = 0 Â
    # Iterate over both the arrays     i = 0          for i in range ( min (m, n)): Â
        # Add the difference to the         # variable answer         if A[i] < B[i]:             ans + = (B[i] - A[i]) Â
    # Return the resultant operations     return ans Â
# Driver Code A = [ 2 , 3 ] B = [ 3 , 5 ] Â
print (FindMinMoves(A, B)) Â
# This code is contributed by gfgking |
C#
// C# program for the above approach using System; Â
class GFG{ Â
// Comparator function public static bool cmp( int a, int b) { Â Â Â Â return a > b; } Â
// Function to find the minimum number // of operation required to satisfy the // given conditions public static int FindMinMoves( int [] A, int [] B) { Â Â Â Â int n, m; Â Â Â Â n = A.Length; Â Â Â Â m = B.Length; Â
    // Sort the array A and B in the     // ascending and descending order     Array.Sort(A);     Array.Sort(B); Â
    int ans = 0; Â
    // Iterate over both the arrays     for ( int i = 0;             i < Math.Min(m, n) && A[i] < B[i]; ++i)     {                  // Add the difference to the         // variable answer         ans += (B[i] - A[i]);     } Â
    // Return the resultant operations     return ans; } Â
// Driver Code public static void Main() { Â Â Â Â int [] A = { 2, 3 }; Â Â Â Â int [] B = { 3, 5 }; Â Â Â Â Â Â Â Â Â Console.Write(FindMinMoves(A, B)); } } Â
// This code is contributed by target_2. |
Javascript
<script> Â
       // JavaScript program for the above approach Â
       // Function to find the minimum number        // of operation required to satisfy the        // given conditions        function FindMinMoves(A, B)        {            let n, m;            n = A.length;            m = B.length; Â
           // sort the array A and B in the            // ascending and descending order            A.sort( function (a, b) { return a - b; });            B.sort( function (a, b) { return b - a; }); Â
           let ans = 0; Â
           // Iterate over both the arrays            for (let i = 0; i < Math.min(m, n)                && A[i] < B[i];                ++i) { Â
               // Add the difference to the                // variable answer                ans += (B[i] - A[i]);            } Â
           // Return the resultant operations            return ans;        } Â
       // Driver Code        let A = [2, 3];        let B = [3, 5];        document.write(FindMinMoves(A, B)); Â
   // This code is contributed by Potta Lokesh    </script> |
3
Â
Time Complexity: O(K*log K), where the value of K is max(N, M).
Auxiliary Space: O(1)
Â
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!