Wednesday, January 1, 2025
Google search engine
HomeData Modelling & AIMinimize maximum difference between adjacent elements possible by removing a single array...

Minimize maximum difference between adjacent elements possible by removing a single array element

Given an sorted array arr[] consisting of N elements, the task is to find the minimum of all maximum differences between adjacent elements of all arrays obtained by removal of any single array element.

Examples:

Input: arr[ ] = { 1, 3, 7, 8}
Output: 5
Explanation:
All possible arrays after removing a single element are as follows:
{3, 7, 8}: Difference between adjacent elements are { 4, 1}. Maximum = 4.
{ 1, 7, 8}: Difference between adjacent elements are { 6, 1}. Maximum = 6.
{ 1, 3, 8}: Difference between adjacent elements are { 2, 5}. Maximum = 5.
Finally, minimum of (4, 6, 5) is 4, which is the required output.

Input: arr[ ] = { 1, 2, 3, 4, 5}
Output: 1
Explanation:
All possible arrays after removing a single element are as follows:
{ 2, 3, 4, 5}: Difference between adjacent elements are { 1, 1, 1}. Maximum = 1.
{ 1, 3, 4, 5}: Difference between adjacent elements are { 2, 1, 1}. Maximum = 2.
{ 1, 2, 4, 5}: Difference between adjacent elements are { 1, 2, 1}. Maximum = 2.
{ 1, 2, 3, 5}: Difference between adjacent elements are { 1, 1, 2}. Maximum = 2.
Finally, minimum of (1, 2, 2, 2) is 1, which is the required output.

Approach: Follow the steps to solve the problem

  • Declare a variable MinValue = INT_MAX to store the final answer.
  • Traverse the array, for i in range [0, N – 1]
    • Declare a vector new_arr which is a copy of arr[] except element arr[i]
    • Store the maximum adjacent difference of new_arr in a variable diff
    • Update MinValue = min(MinValue, diff)
  • Return MinValue as the final answer.

Below is the implementation of above approach.

C++




// C++ Program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find maximum difference
// between adjacent array elements
int maxAdjacentDifference(vector<int> A)
{
    // Store the maximum difference
    int diff = 0;
 
// Traverse the array
    for (int i = 1; i < (int)A.size(); i++) {
 
        // Update maximum difference
        diff = max(diff, A[i] - A[i - 1]);
    }
 
    return diff;
}
 
// Function to calculate the minimum
// of maximum difference between
// adjacent array elements possible
// by removing a single array element
int MinimumValue(int arr[], int N)
{
    // Stores the required minimum
    int MinValue = INT_MAX;
 
    for (int i = 0; i < N; i++) {
 
        // Stores the updated array
        vector<int> new_arr;
 
        for (int j = 0; j < N; j++) {
 
            // Skip the i-th element
            if (i == j)
                continue;
 
            new_arr.push_back(arr[j]);
        }
 
        // Update MinValue
        MinValue
            = min(MinValue,
                  maxAdjacentDifference(new_arr));
    }
 
    // return MinValue
    return MinValue;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 3, 7, 8 };
    int N = sizeof(arr) / sizeof(int);
    cout << MinimumValue(arr, N);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG
{
 
// Function to find maximum difference
// between adjacent array elements
static int maxAdjacentDifference(ArrayList<Integer> A)
{
   
    // Store the maximum difference
    int diff = 0;
 
// Traverse the array
    for (int i = 1; i < (int)A.size(); i++)
    {
 
        // Update maximum difference
        diff = Math.max(diff, A.get(i) - A.get(i - 1));
    }
 
    return diff;
}
 
// Function to calculate the minimum
// of maximum difference between
// adjacent array elements possible
// by removing a single array element
static int MinimumValue(int arr[], int N)
{
   
    // Stores the required minimum
    int MinValue = Integer.MAX_VALUE;
 
    for (int i = 0; i < N; i++) {
 
        // Stores the updated array
        ArrayList<Integer> new_arr=new ArrayList<>();
 
        for (int j = 0; j < N; j++) {
 
            // Skip the i-th element
            if (i == j)
                continue;
 
            new_arr.add(arr[j]);
        }
 
        // Update MinValue
        MinValue
            = Math.min(MinValue,
                  maxAdjacentDifference(new_arr));
    }
 
    // return MinValue
    return MinValue;
 
}
 
  // Driver code
    public static void main (String[] args) {
     int arr[] = { 1, 3, 7, 8 };
    int N = arr.length;
   System.out.print(MinimumValue(arr, N));
 
    }
}
 
// This code is contributed by offbeat


Python3




# Python3 program to implement
# the above approach
import sys
 
# Function to find maximum difference
# between adjacent array elements
def maxAdjacentDifference(A):
     
    # Store the maximum difference
    diff = 0
 
    # Traverse the array
    for i in range(1, len(A), 1):
         
        # Update maximum difference
        diff = max(diff, A[i] - A[i - 1])
 
    return diff
 
# Function to calculate the minimum
# of maximum difference between
# adjacent array elements possible
# by removing a single array element
def MinimumValue(arr, N):
     
    # Stores the required minimum
    MinValue = sys.maxsize
 
    for i in range(N):
         
        # Stores the updated array
        new_arr = []
 
        for j in range(N):
             
            # Skip the i-th element
            if (i == j):
                continue
 
            new_arr.append(arr[j])
 
        # Update MinValue
        MinValue = min(MinValue,
                       maxAdjacentDifference(new_arr))
 
    # return MinValue
    return MinValue
 
# Driver Code
if __name__ == '__main__':
     
    arr =  [ 1, 3, 7, 8 ]
    N = len(arr)
     
    print(MinimumValue(arr, N))
 
# This code is contributed by SURENDRA_GANGWAR


C#




// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to find maximum difference
// between adjacent array elements
static int maxAdjacentDifference(List<int> A)
{
     
    // Store the maximum difference
    int diff = 0;
 
    // Traverse the array
    for(int i = 1; i < A.Count; i++)
    {
         
        // Update maximum difference
        diff = Math.Max(diff, A[i] - A[i - 1]);
    }
    return diff;
}
 
// Function to calculate the minimum
// of maximum difference between
// adjacent array elements possible
// by removing a single array element
static int MinimumValue(int[] arr, int N)
{
     
    // Stores the required minimum
    int MinValue = Int32.MaxValue;
 
    for(int i = 0; i < N; i++)
    {
         
        // Stores the updated array
        List<int> new_arr = new List<int>();
 
        for(int j = 0; j < N; j++)
        {
             
            // Skip the i-th element
            if (i == j)
                continue;
 
            new_arr.Add(arr[j]);
        }
 
        // Update MinValue
        MinValue = Math.Min(MinValue,
             maxAdjacentDifference(new_arr));
    }
 
    // Return MinValue
    return MinValue;
}
 
// Driver Code
public static void Main(string[] args)
{
    int[] arr = { 1, 3, 7, 8 };
    int N = arr.Length;
     
    Console.WriteLine(MinimumValue(arr, N));
}
}
 
// This code is contributed by ukasp


Javascript




<script>
 
// JavaScript program to implement
// the above approach
 
// Function to find maximum difference
// between adjacent array elements
function maxAdjacentDifference(A)
{
    
    // Store the maximum difference
    let diff = 0;
  
// Traverse the array
    for (let i = 1; i < A.length; i++)
    {
  
        // Update maximum difference
        diff = Math.max(diff, A[i] - A[i-1]);
    }
  
    return diff;
}
  
// Function to calculate the minimum
// of maximum difference between
// adjacent array elements possible
// by removing a single array element
function MinimumValue(arr, N)
{
    
    // Stores the required minimum
    let MinValue = Number.MAX_VALUE;
  
    for (let i = 0; i < N; i++) {
  
        // Stores the updated array
        let new_arr=[];
  
        for (let j = 0; j < N; j++) {
  
            // Skip the i-th element
            if (i == j)
                continue;
  
            new_arr.push(arr[j]);
        }
  
        // Update MinValue
        MinValue
            = Math.min(MinValue,
                  maxAdjacentDifference(new_arr));
    }
  
    // return MinValue
    return MinValue;
  
}
 
// Driver code
 
    let arr = [ 1, 3, 7, 8 ];
    let N = arr.length;
   document.write(MinimumValue(arr, N));
            
</script>


Output: 

4

 

Time Complexity : O(N2)
Auxiliary Space: O(N)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments