Given a sorted array arr[] of positive integers of size K, and an integer N, where some numbers can be inserted into the array such that all positive integers [1, N] can be obtained as a sum of subsets of the modified array. The task is to find the minimum number of insertions required.
Note: Minimum length of the array can be 1.
Examples:
Input: K = 2, arr = [1, 2], N = 4
Output: 1
Explanation We need to insert either 3 or 4 in the array.Input: K = 4, arr = [1, 2, 4, 8], N = 15
Output: 0
Approach: This problem can be solved using Greedy Approach.
- Form a list say X[] of essential elements needed to form a sum up to N by including some elements from the given array arr[] and/or adding other missing elements that are required.
- Initially, begin with the empty list X[], the range of possible sums using numbers from X[] is [0, 0].
- Suppose that the elements in the range [1, m] (m < N) can be represented as a sum of the elements present in the list X[] at that instant, and numbers till index i of the arr[] have been added.
Below are the following possibilities:
- If the (i+1)th number of arr[] is = (m + 1), then the extra sums possible are:
(m + 1), (m + 2), (m + 3)…, (m + m + 1).
Hence, the range becomes [1, ((2 * m) + 1)]. Add the number arr[i+1] to X[]. Increment the value of i.- If the (i+1)th number of arr[] is < (m + 1), let it be k, then extra sums possible are:
(1 + k), (2 + k), (3 + k), …(m + k).
Hence, the range becomes [1, (m + k)]. Add the number arr[i+1] to X[] Increment the value of i.- If the (i+1)th number of arr[] is > (m + 1), then (m + 1) should be inserted to the array X[], else there is no way to obtain a sum of (m + 1) by these numbers.
Hence, the range becomes [1, ((2 * m) + 1)] after insertion of (m + 1). Do not increment the value of i.
- Repeat this process until the range crosses the given number N.
- Even after doing so, if all the numbers in the array arr[] are traversed, and the range hasn’t crossed N, then there is a need to keep on adding more and more numbers to X[] till the range crosses N.
- The difference between the sizes of X[] and arr[] is the required minimum number of insertions to be made.
- After including all the essential elements in X[] the range should be at least [1, N] with a minimum number of insertions from outside the given list.
Note: Instead of maintaining a list X[], a counter variable ans can be initialised to 0 and everytime a new element is added the counter value can be incremented. The value of the counter variable is the required answer.
Below is the implementation of the above approach:
C++
// C++ code to minimize insertions // such that sum of subsets of // array elements form all numbers // up to N #include <bits/stdc++.h> using namespace std; #define N 100005 int minInsertions(vector< int >& v, int n) { // initialised rangeEnd which // denotes the range covered, // [1, rangeEnd] ans denotes // the number of insertions made // so far int rangeEnd = 0, ans = 0; for ( auto i : v) { // in the case where our next // number is greater than // rangeEnd+1, it is compulsory // to insert rangeEnd+1 while (i > rangeEnd + 1) { ans++; rangeEnd = rangeEnd * 2 + 1; if (rangeEnd >= n) { return ans; } } // otherwise we just move // forward our rangeEnd rangeEnd += i; if (rangeEnd >= n) { return ans; } } // after we have included all // elements in the array and have // still not reached n, we insert // numbers = rangeEnd+1 till // we reach n while (rangeEnd < n) { ans++; rangeEnd = rangeEnd * 2 + 1; } return ans; } // Driver Program signed main() { // the size of the given array int k = 4; // the given number n int n = 15; std::vector< int > v = { 1, 6, 7, 9 }; cout << minInsertions(v, n); return 0; } |
Java
// Java code to minimize insertions // such that sum of subsets of // array elements form all numbers // up to N class GFG { int N = 100005 ; static int minInsertions( int []v, int n) { // initialised rangeEnd which // denotes the range covered, // [1, rangeEnd] ans denotes // the number of insertions made // so far int rangeEnd = 0 , ans = 0 ; for ( int i : v) { // in the case where our next // number is greater than // rangeEnd+1, it is compulsory // to insert rangeEnd+1 while (i > rangeEnd + 1 ) { ans++; rangeEnd = rangeEnd * 2 + 1 ; if (rangeEnd >= n) { return ans; } } // otherwise we just move // forward our rangeEnd rangeEnd += i; if (rangeEnd >= n) { return ans; } } // after we have included all // elements in the array and have // still not reached n, we insert // numbers = rangeEnd+1 till // we reach n while (rangeEnd < n) { ans++; rangeEnd = rangeEnd * 2 + 1 ; } return ans; } // Driver Program public static void main (String[] args) { // the size of the given array int k = 4 ; // the given number n int n = 15 ; int v[] = { 1 , 6 , 7 , 9 }; System.out.println(minInsertions(v, n)); } } // This code is contributed by AnkitRai01 |
Python3
# Python3 program to minimize insertions # such that sum of subsets of # array elements form all numbers # up to N N = 100005 def minInsertions(v, n): # Initialised rangeEnd which # denotes the range covered, # [1, rangeEnd] ans denotes # the number of insertions made # so far rangeEnd, ans = 0 , 0 for i in v: # In the case where our next # number is greater than # rangeEnd+1, it is compulsory # to insert rangeEnd+1 while (i > rangeEnd + 1 ): ans + = 1 rangeEnd = rangeEnd * 2 + 1 if (rangeEnd > = n): return ans # Otherwise we just move # forward our rangeEnd rangeEnd + = i if (rangeEnd > = n): return ans # After we have included all # elements in the array and have # still not reached n, we insert # numbers = rangeEnd+1 till # we reach n while (rangeEnd < n): ans + = 1 rangeEnd = rangeEnd * 2 + 1 return ans # Driver code if __name__ = = "__main__" : # The size of the given array k = 4 # The given number n n = 15 v = [ 1 , 6 , 7 , 9 ] print (minInsertions(v, n)) # This code is contributed by chitranayal |
C#
// C# program to minimize insertions // such that sum of subsets of // array elements form all numbers // up to N using System; class GFG{ //int N = 100005; static int minInsertions( int []v, int n) { // Initialised rangeEnd which // denotes the range covered, // [1, rangeEnd] ans denotes // the number of insertions made // so far int rangeEnd = 0, ans = 0; foreach ( int i in v) { // In the case where our next // number is greater than // rangeEnd+1, it is compulsory // to insert rangeEnd+1 while (i > rangeEnd + 1) { ans++; rangeEnd = rangeEnd * 2 + 1; if (rangeEnd >= n) { return ans; } } // Otherwise we just move // forward our rangeEnd rangeEnd += i; if (rangeEnd >= n) { return ans; } } // After we have included all // elements in the array and have // still not reached n, we insert // numbers = rangeEnd+1 till // we reach n while (rangeEnd < n) { ans++; rangeEnd = rangeEnd * 2 + 1; } return ans; } // Driver code public static void Main(String[] args) { // The size of the given array //int k = 4; // The given number n int n = 15; int []v = { 1, 6, 7, 9 }; Console.WriteLine(minInsertions(v, n)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // JavaScript code to minimize insertions // such that sum of subsets of // array elements form all numbers // up to N let N = 100005; function minInsertions(v, n) { // initialised rangeEnd which // denotes the range covered, // [1, rangeEnd] ans denotes // the number of insertions made // so far let rangeEnd = 0, ans = 0; for (let i in v) { // in the case where our next // number is greater than // rangeEnd+1, it is compulsory // to insert rangeEnd+1 while (i > rangeEnd + 1) { ans++; rangeEnd = rangeEnd * 2 + 1; if (rangeEnd >= n) { return ans; } } // otherwise we just move // forward our rangeEnd rangeEnd += i; if (rangeEnd >= n) { return ans; } } // after we have included all // elements in the array and have // still not reached n, we insert // numbers = rangeEnd+1 till // we reach n while (rangeEnd < n) { ans++; rangeEnd = rangeEnd * 2 + 1; } return ans; } // Driver Code // the size of the given array let k = 4; // the given number n let n = 15; let v = [ 1, 6, 7, 9 ]; document.write(minInsertions(v, n)); </script> |
2
Time Complexity: O(K + log(N))
Auxiliary Space: O(1) because it is using constant space for variables
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!