Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIMinimize deletions to reduce String to size 1 wherein ith deletion, N/2^i...

Minimize deletions to reduce String to size 1 wherein ith deletion, N/2^i occurrences of (X+i-1)th character can be deleted

Given string str of length N and a character X, where N is always of the form 2k, the task is to find the minimum replacement operations required to reduce the size of the string to 1 wherein ith deletion, N/2i occurrences of (X + i – 1)th character can be deleted either from the front or the back of the string.

Example:

Input: str = “CDAAAABB”, X = ‘A’
Output: 4
Explanation: Replacement operations on the given string can be done as:

  1. Replace ‘C’ at 1st index with ‘A’.
  2. Replace ‘D’ at 2nd index with ‘A’.
  3. Replace ‘A’ at 5th index with ‘D’.
  4. Replace ‘A’ at 6th index with ‘C’.

Therefore, the string becomes str = “AAAADCBB”. During the 1st deletion (8/21) occurrences of (A+1-1)th character can be removed from the front of the string. Therefore, the string becomes str = “DCBB”. Similarly, during the 2nd deletion (8/22) occurrences of (A+2-1)th  i.e, ‘B’ character can be removed from the back of the string. Therefore, the string becomes str = “DC”. Similarly, after the 3rd deletion, the string becomes str = “D” having length as 1. Therefore, the number of required replacement operations are 4 which is the minimum possible.

Input: str = “QRQP”, X = ‘P’
Output: 1

 

Approach: The given problem can be solved by using Recursion having a similar structure as that of the Binary Search. During each deletion, it can be observed that there are 2 possible choices. They are as follows:

  1. Replace all the characters of the first half of the given string by ‘X’ and recursively call for the remaining half for X = X + 1.
  2. Or, replace all the characters of the second half of the given string by ‘X’ and recursively call for the remaining half for X = X + 1.

Therefore, using the above observations create a recursive function that takes the minimum moves out of the two possibilities by calculating the number of indices that need to be replaced to X in the first half of the string and recursively calling for the remaining half and vice versa.

Below is the implementation of the above approach:

C++




// C++ implementation for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Recursive function to find minimum
// replacements required to reduce the
// size of the given string to 1
int minReplacment(string s, char x)
{
    // Base Case
    if (s.size() == 1) {
        return s[0] != x;
    }
 
    // Stores the middle index
    int mid = s.size() / 2;
 
    // Recursive call for left half
    int cntl = minReplacment(
        string(s.begin(), s.begin() + mid), x + 1);
    cntl += s.size() / 2
            - count(s.begin() + mid, s.end(), x);
 
    // Recursive call for right half
    int cntr = minReplacment(
        string(s.begin() + mid, s.end()), x + 1);
    cntr += s.size() / 2
            - count(s.begin(), s.begin() + mid, x);
 
    // Return Answer
    return min(cntl, cntr);
}
 
// Driver Code
int main()
{
    int N = 8;
    string str = "CDAAAABB";
    char X = 'A';
 
    cout << minReplacment(str, X);
 
    return 0;
}


Java




/*package whatever //do not write package name here */
// Java code for the above approach
import java.util.*;
 
class GFG {
    public static int count(String str, char c)
    {
        int ct = 0;
 
        for (int i = 0; i < str.length(); i++) {
            char currChar = str.charAt(i);
            if (currChar == c)
                ct += 1;
        }
 
        return ct;
    }
 
    // Recursive function to find minimum
    // replacements required to reduce the
    // size of the given string to 1
    static int minReplacment(String s, char x)
    {
        // Base Case
        if (s.length() == 1) {
            if (s.charAt(0) == x)
                return 1;
            return 0;
        }
 
        // Stores the middle index
        int mid = s.length() / 2;
 
        // Recursive call for left half
        char p = (char)(x + 1);
        int cntl = minReplacment(s.substring(0, mid), p);
        cntl = cntl + s.length() / 2
               - count(s.substring(mid, s.length()), x);
 
        // Recursive call for right half
        char t = (char)(x + 1);
        int cntr = minReplacment(
            s.substring(mid, s.length()), t);
        cntr = cntr + s.length() / 2
               - count(s.substring(0, mid), x);
 
        // Return Answer
        return Math.min(cntl + 1, cntr);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
 
        int N = 8;
        String str = "CDAAAABB";
        char X = 'A';
        System.out.println(minReplacment(str, X));
    }
}
 
// This code is contributed by Potta Lokesh


Python3




# Python 3 implementation for the above approach
 
# Recursive function to find minimum
# replacements required to reduce the
# size of the given string to 1
def minReplacment(s,  x):
 
    # Base Case
    if (len(s) == 1):
        return s[0] != x
 
    # Stores the middle index
    mid = len(s) // 2
 
    # Recursive call for left half
    cntl = minReplacment(
        s[:mid], chr(ord(x) + 1))
    cntl += len(s) // 2 - s[mid:].count(x)
 
    # Recursive call for right half
    cntr = minReplacment(
        s[mid:], chr(ord(x) + 1))
    cntr += len(s) // 2 - s[:mid].count(x)
 
    # Return Answer
    return min(cntl, cntr)
 
# Driver Code
if __name__ == "__main__":
 
    N = 8
    st = "CDAAAABB"
    X = 'A'
 
    print(minReplacment(st, X))
 
    # This code is contributed by ukasp.


C#




/*package whatever //do not write package name here */
// C# code for the above approach
using System;
 
public class GFG {
    public static int count(String str, char c)
    {
        int ct = 0;
 
        for (int i = 0; i < str.Length; i++) {
            char currChar = str[i];
            if (currChar == c)
                ct += 1;
        }
 
        return ct;
    }
 
    // Recursive function to find minimum
    // replacements required to reduce the
    // size of the given string to 1
    static int minReplacment(String s, char x)
    {
        // Base Case
        if (s.Length == 1) {
            if (s[0] == x)
                return 1;
            return 0;
        }
 
        // Stores the middle index
        int mid = s.Length / 2;
 
        // Recursive call for left half
        char p = (char)(x + 1);
        int cntl = minReplacment(s.Substring(0, mid), p);
        cntl = cntl + s.Length / 2
               - count(s.Substring(mid, s.Length-mid), x);
 
        // Recursive call for right half
        char t = (char)(x + 1);
        int cntr = minReplacment(
            s.Substring(mid, s.Length-mid), t);
        cntr = cntr + s.Length / 2
               - count(s.Substring(0, mid), x);
 
        // Return Answer
        return Math.Min(cntl + 1, cntr);
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        String str = "CDAAAABB";
        char X = 'A';
        Console.WriteLine(minReplacment(str, X));
    }
}
 
// This code is contributed by shikhasingrajput


Javascript




<script>
// Javascript implementation for the above approach
 
function count(str, c) {
    let ct = 0;
 
    for (let i = 0; i < str.length; i++) {
        let currChar = str[i];
        if (currChar == c)
            ct += 1;
    }
 
    return ct;
}
 
// Recursive function to find minimum
// replacements required to reduce the
// size of the given string to 1
function minReplacment(s, x) {
    // Base Case
    if (s.length == 1) {
        if(s[0] == x){
            return 1
        }
        return 0
    }
 
    // Stores the middle index
    let mid = Math.floor(s.length / 2);
 
    // Recursive call for left half
    let cntl = minReplacment(s.substring(0, mid), String.fromCharCode(x.charCodeAt(0) + 1));
    cntl += Math.floor(s.length / 2) - count(s.substring(mid, s.length), x);
 
    // Recursive call for right half
    let cntr = minReplacment(new String(s.substring(mid, s.length)), String.fromCharCode(x.charCodeAt(0) + 1));
    cntr += Math.floor(s.length / 2) - count(s.substring(0, mid), x);
 
    // Return Answer
    return Math.min(cntl + 1, cntr);
}
 
// Driver Code
 
let N = 8;
let str = "CDAAAABB";
let X = 'A';
 
document.write(minReplacment(str, X));
 
// This code is contributed by gfgking.
</script>


Output

4

Time Complexity: O(N*log N)
Auxiliary Space: O(1)

Last Updated :
20 Jan, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments