Given an array arr[ ] and an integer K, the task is to split the given array into minimum number of subsets having the difference between the maximum and the minimum element ≤ K.
Examples:
Input: arr[ ] = {1, 3, 7, 9, 10}, K = 3
Output: 2
Explanation:
One of the possible subsets of arr[] are {1, 3} and {7, 9, 10} where the difference between maximum and minimum element does not greater than K i.e, 3.Input: arr[ ] = {1, 10, 8, 3, 9}, K =3
Output: 2.
Approach: Follow the steps below to solve the problem:
- Sort the array in ascending order.
- Iterate over the array, setting currMin as the first element of the array and keep updating currMax with the elements traversed.
- If at any index, the difference between currMax and currMin exceeds K, increment answer by 1 and set currMax and currMin to arr[i].
- Finally, return answer.
Below is the implementation of the above approach:
C++
// C++ Program to implement // above approach #include <bits/stdc++.h> using namespace std; // Function to find the minimum count // of subsets of required type int findCount( int arr[], int N, int K) { sort(arr, arr + N); // Stores the result int result = 1; // Store the maximum and minimum // element of the current subset int cur_max = arr[0]; int cur_min = arr[0]; for ( int i = 1; i < N; i++) { // Update current maximum cur_max = arr[i]; // If difference exceeds K if (cur_max - cur_min > K) { // Update count result++; // Update maximum and minimum // to the current subset cur_max = arr[i]; cur_min = arr[i]; } } return result; } // Driver Code int main() { int arr[] = { 1,10, 8, 3, 9 }; int K = 3; int N = sizeof (arr) / sizeof (arr[0]); cout << findCount(arr, N, K); return 0; } |
Java
// Java program to implement // above approach import java.util.*; class GFG{ // Function to find the minimum count // of subsets of required type static int findCount( int arr[], int N, int K) { Arrays.sort(arr); // Stores the result int result = 1 ; // Store the maximum and minimum // element of the current subset int cur_max = arr[ 0 ]; int cur_min = arr[ 0 ]; for ( int i = 1 ; i < N; i++) { // Update current maximum cur_max = arr[i]; // If difference exceeds K if (cur_max - cur_min > K) { // Update count result++; // Update maximum and minimum // to the current subset cur_max = arr[i]; cur_min = arr[i]; } } return result; } // Driver Code public static void main(String[] args) { int arr[] = { 1 , 10 , 8 , 3 , 9 }; int K = 3 ; int N = arr.length; System.out.print(findCount(arr, N, K)); } } // This code is contributed by amal kumar choubey |
Python3
# Python3 program to implement # the above approach # Function to find the minimum count # of subsets of required type def findCount(arr, N, K): arr.sort() # Stores the result result = 1 # Store the maximum and minimum # element of the current subset cur_max = arr[ 0 ] cur_min = arr[ 0 ] for i in range ( 1 , N): # Update current maximum cur_max = arr[i] # If difference exceeds K if (cur_max - cur_min > K): # Update count result + = 1 # Update maximum and minimum # to the current subset cur_max = arr[i] cur_min = arr[i] return result # Driver Code arr = [ 1 , 10 , 8 , 3 , 9 ] K = 3 N = len (arr) # Function call print (findCount(arr, N, K)) # This code is contributed by Shivam Singh |
C#
// C# program to implement // above approach using System; class GFG{ // Function to find the minimum count // of subsets of required type static int findCount( int []arr, int N, int K) { Array.Sort(arr); // Stores the result int result = 1; // Store the maximum and minimum // element of the current subset int cur_max = arr[0]; int cur_min = arr[0]; for ( int i = 1; i < N; i++) { // Update current maximum cur_max = arr[i]; // If difference exceeds K if (cur_max - cur_min > K) { // Update count result++; // Update maximum and minimum // to the current subset cur_max = arr[i]; cur_min = arr[i]; } } return result; } // Driver Code public static void Main(String[] args) { int []arr = { 1, 10, 8, 3, 9 }; int K = 3; int N = arr.Length; Console.Write(findCount(arr, N, K)); } } // This code is contributed by gauravrajput1 |
Javascript
<script> // javascript program for the // above approach // Function to find the minimum count // of subsets of required type function findCount(arr, N, K) { arr.sort(); // Stores the result let result = 1; // Store the maximum and minimum // element of the current subset let cur_max = arr[0]; let cur_min = arr[0]; for (let i = 1; i < N; i++) { // Update current maximum cur_max = arr[i]; // If difference exceeds K if (cur_max - cur_min > K) { // Update count result++; // Update maximum and minimum // to the current subset cur_max = arr[i]; cur_min = arr[i]; } } return result; } // Driver Code let arr = [ 1, 10, 8, 3, 9 ]; let K = 3; let N = arr.length; document.write(findCount(arr, N, K)); // This code is contributed by target_2. </script> |
2
Time Complexity: O(NLog(N))
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!