Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AIMinimize cost to Swap two given Arrays

Minimize cost to Swap two given Arrays

Given two arrays A[] and B[] both of size N consisting of distinct elements, the task is to find the minimum cost to swap two given arrays. Cost of swapping two elements A[i] and B[j] is min(A[i], A[j]). The total cost is the cumulative sum of the costs of all swap operations. 

Note: Here, the order of elements can differ from the original arrays after swapping.

Examples:

Input: N = 3, A[] = {1, 4, 2}, B[] = {10, 6, 12} 
Output:
Explanation: 
Following swap operations will give the minimum cost: 
swap(A[0], B[2]): cost = min(A[0], B[2]) = 1, A[ ] = {12, 4, 2}, B[ ] = {10, 6, 1} 
swap(A[2], B[2]): cost = min(A[2], B[2]) = 1, A[ ] = {12, 4, 1}, B[ ] = {10, 6, 2} 
swap(A[2], B[0]): cost = min(A[2], B[0]) = 1, A[ ] = {12, 4, 10}, B[ ] = {1, 6, 2} 
swap(A[1], B[0]): cost = min(A[1], B[0]) = 1, A[ ] = {12, 1, 10}, B[ ] = {4, 6, 2} 
swap(A[1], B[1]): cost = min(A[1], B[1]) = 1, A[ ] = {12, 6, 10}, B[ ] = {4, 1, 2} 
Therefore, the minimum cost to swap two arrays = 1 + 1 + 1 + 1 + 1 = 5
Input: N = 2, A[] = {9, 12}, B[] = {3, 15} 
Output:
 

Approach: 
Follow the steps below to solve the problem:  

  • Traverse the arrays simultaneously and find the minimum element from them, say K.
  • Now, every element with K until the two arrays are swapped. Therefore, the number of swaps required is 2*N – 1.
  • Print K * (2 * N – 1) as the answer.

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate and return the
// minimum cost required to swap two arrays
int getMinCost(vector<int> A, vector<int> B,
               int N)
{
 
    int mini = INT_MAX;
    for (int i = 0; i < N; i++) {
        mini = min(mini, min(A[i], B[i]));
    }
 
    // Return the total minimum cost
    return mini * (2 * N - 1);
}
 
// Driver Code
int main()
{
    int N = 3;
 
    vector<int> A = { 1, 4, 2 };
    vector<int> B = { 10, 6, 12 };
 
    cout << getMinCost(A, B, N);
    return 0;
}


Java




// Java program to implement
// the above approach
class GFG{
 
// Function to calculate and return the
// minimum cost required to swap two arrays
static int getMinCost(int [] A, int [] B,
                                   int N)
{
    int mini = Integer.MAX_VALUE;
    for (int i = 0; i < N; i++)
    {
        mini = Math.min(mini,
               Math.min(A[i], B[i]));
    }
 
    // Return the total minimum cost
    return mini * (2 * N - 1);
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 3;
 
    int [] A = { 1, 4, 2 };
    int [] B = { 10, 6, 12 };
 
    System.out.print(getMinCost(A, B, N));
}
}
 
// This code is contributed by sapnasingh4991


Python3




# Python3 program to implement
# the above approach
import sys
 
# Function to calculate and return the
# minimum cost required to swap two arrays
def getMinCost(A, B, N):
 
    mini = sys.maxsize
    for i in range(N):
        mini = min(mini, min(A[i], B[i]))
 
    # Return the total minimum cost
    return mini * (2 * N - 1)
 
# Driver Code
N = 3
 
A = [ 1, 4, 2 ]
B = [ 10, 6, 12 ]
 
print(getMinCost(A, B, N))
 
# This code is contributed by chitranayal


C#




// C# program to implement
// the above approach
using System;
class GFG{
 
    // Function to calculate and return the
    // minimum cost required to swap two arrays
    static int getMinCost(int[] A, int[] B, int N)
    {
        int mini = int.MaxValue;
        for (int i = 0; i < N; i++)
        {
            mini = Math.Min(mini, Math.Min(A[i], B[i]));
        }
 
        // Return the total minimum cost
        return mini * (2 * N - 1);
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        int N = 3;
          int[] A = {1, 4, 2};
        int[] B = {10, 6, 12};
          Console.Write(getMinCost(A, B, N));
    }
}
 
// This code is contributed by shikhasingrajput


Javascript




<script>
// Java script program to implement
// the above approach
function  getMinCost(A,B,N)
{
    let mini = Number.MAX_VALUE;
    for (let i = 0; i < N; i++)
    {
        mini = Math.min(mini,
            Math.min(A[i], B[i]));
    }
 
    // Return the total minimum cost
    return mini * (2 * N - 1);
}
 
// Driver Code
 
    let N = 3;
 
    let A = [ 1, 4, 2 ];
    let B = [ 10, 6, 12 ];
 
    document.write(getMinCost(A, B, N));
 
 
// This code is contributed by manoj
</script>


Output: 

5

 

Time Complexity: O(N) 
Auxiliary Space: O(1) 
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments