Given, a binary tree, the task is to convert this tree using minimum number of increment-decrement operations into a tree which satisfies the following conditions:
- The root node is always 1.
- Every left child of a node is even.
- Every right child of a node is odd.
Return and print the minimum number of increment-decrement operations required at the end.
Examples:
Input:
Output: 3
Explanation:
Since root is already 1, no change is needed at root
Left child of root node is 2, so no change is needed here.
Right child of root node is 2, so change it to 3, making a change of 1.
Left child of node 2 is 5, so change it to 4, making a change of 1.
Left child of node 3 is 6, so no change is needed here.
Right child of node 3 is 8, so change it to 9, making a change of 1.
Hence total changes needed is 3.Input:
Output: 0
Explanation: The given tree already satisfies the given conditions.
Approach: The idea is to change every node which does not satisfies the condition based on below observation:
- If the root node is not 1, we can keep decrementing it by 1 till it becomes 1. So root-1 operations needed here.
- If the current node is a left child, and it is odd, we can simply make it even by incrementing or decrementing by 1. So 1 operation is needed here.
- If the current node is a right child, and it is even, we can simply make it odd by incrementing or decrementing by 1. So 1 operation is needed here.
Therefore, simply traverse the given Tree and:
- Add root-1 operations to the answer if the root is not 1.
- Add the count of left child which are odd, to the answer
- Also add the count of right child which are even, to the answer.
Based on above idea, we can do a DFS traversal as per below steps:
- Traverse left and right child recursively.
- Check if visited node’s left value is not null and node’s left child value is odd
- Increment answer by 1
- Check if visited node’s right value is not null and node’s right child value is even
- Increment answer by 1
- Check if visited node’s left value is not null and node’s left child value is odd
- Again Recursively call for left and right node till whole tree is traversed.
- Also check if root is not equal to 1.
- If true, add root_value – 1 to the answer.
- Return the answer at the end.
Below is the implementation of the above approach:
C++
// C++ code for the above approach #include <bits/stdc++.h> using namespace std; // To store the final changes needed int count_of_changes; struct Node { int value; struct Node *left, *right; }; // Utility function to create new // tree node Node* newNode( int data) { Node* temp = new Node; temp->value = data; temp->left = temp->right = NULL; return temp; } // DFS function to convert // binary tree to proper tree void dfs(Node* root) { // Check if given root is NULL // base case if (root == NULL) return ; // Check if visited node's // left value is not null and // node's left child value is odd // decrement its value by 1 if (root->left && root->left->value % 2 == 1) { root->left->value -= 1; count_of_changes++; } // Check if visited node's // value is not null and node's // right child value is even, // increment its value by 1 if (root->right && root->right->value % 2 == 0) { root->right->value += 1; count_of_changes++; } // Recursive call for left node dfs(root->left); // Recursive call for right node dfs(root->right); } // Function to find // the min changes needed int minCount(Node* root) { // Initial value for // final changes needed count_of_changes = 0; // Base case to check // if root is NULL if (root == NULL) return count_of_changes; if (root->value != 1) { // Add root_value - 1 to the ans count_of_changes += root->value - 1; // Set root->Value to 1 root->value = 1; } // DFS Function call dfs(root); // Return the final count return count_of_changes; } // Driver Code int main() { // Taking input Node* root = newNode(1); root->left = newNode(2); root->right = newNode(2); root->left->left = newNode(5); root->right->left = newNode(6); root->right->right = newNode(8); // Function call cout << minCount(root) << endl; return 0; } |
Java
// JAVA code for the above approach import java.util.*; class GFG { // To store the final changes needed static int count_of_changes; public static class Node { int value; Node left, right; } // Utility function to create new // tree node public static Node newNode( int data) { Node temp = new Node(); temp.value = data; temp.left = temp.right = null ; return temp; } // DFS function to convert // binary tree to proper tree public static void dfs(Node root) { // Check if given root is null // base case if (root == null ) return ; // Check if visited node's // left value is not null and // node's left child value is odd // decrement its value by 1 if (root.left != null && root.left.value % 2 == 1 ) { root.left.value -= 1 ; count_of_changes++; } // Check if visited node's // value is not null and node's // right child value is even, // increment its value by 1 if (root.right != null && root.right.value % 2 == 0 ) { root.right.value += 1 ; count_of_changes++; } // Recursive call for left node dfs(root.left); // Recursive call for right node dfs(root.right); } // Function to find // the min changes needed public static int minCount(Node root) { // Initial value for // final changes needed count_of_changes = 0 ; // Base case to check // if root is null if (root == null ) return count_of_changes; if (root.value != 1 ) { // Add root_value - 1 to the ans count_of_changes += root.value - 1 ; // Set root->Value to 1 root.value = 1 ; } // DFS Function call dfs(root); // Return the final count return count_of_changes; } // Driver code public static void main(String[] args) { // Taking input Node root = newNode( 1 ); root.left = newNode( 2 ); root.right = newNode( 2 ); root.left.left = newNode( 5 ); root.right.left = newNode( 6 ); root.right.right = newNode( 8 ); // Function call System.out.println(minCount(root)); } } // This code is contributed by jana_sayantan. |
Python3
# Python code for the above approach # To store the final changes needed count_of_changes = 0 class Node: def __init__( self ,data = 0 ,left = None ,right = None ): self .data = data self .left = left self .right = right # Utility function to create new # tree node def newNode(data): temp = Node() temp.value = data temp.left = temp.right = None return temp # DFS function to convert # binary tree to proper tree def dfs(root): global count_of_changes # Check if given root is None # base case if (root = = None ): return # Check if visited node's # left value is not None and # node's left child value is odd # decrement its value by 1 if (root.left and root.left.value % 2 = = 1 ) : root.left.value - = 1 count_of_changes + = 1 # Check if visited node's # value is not None and node's # right child value is even, # increment its value by 1 if (root.right and root.right.value % 2 = = 0 ): root.right.value + = 1 count_of_changes + = 1 # Recursive call for left node dfs(root.left) # Recursive call for right node dfs(root.right) # Function to find # the min changes needed def minCount(root): # Initial value for # final changes needed global count_of_changes count_of_changes = 0 # Base case to check # if root is None if (root = = None ): return count_of_changes if (root.value ! = 1 ): # Add root_value - 1 to the ans count_of_changes + = root.value - 1 # Set root.Value to 1 root.value = 1 # DFS Function call dfs(root) # Return the final count return count_of_changes # Driver Code # Taking input root = newNode( 1 ) root.left = newNode( 2 ) root.right = newNode( 2 ) root.left.left = newNode( 5 ) root.right.left = newNode( 6 ) root.right.right = newNode( 8 ) # Function call print (minCount(root)) # This code is contributed by shinjanpatra |
C#
// C# program to implement above approach using System; using System.Collections; using System.Collections.Generic; class GFG { // To store the final changes needed static int count_of_changes; public class Node { public int value; public Node left, right; } // Utility function to create new // tree node public static Node newNode( int data) { Node temp = new Node(); temp.value = data; temp.left = temp.right = null ; return temp; } // DFS function to convert // binary tree to proper tree public static void dfs(Node root) { // Check if given root is null // base case if (root == null ) return ; // Check if visited node's // left value is not null and // node's left child value is odd // decrement its value by 1 if (root.left != null && root.left.value % 2 == 1) { root.left.value-=1; count_of_changes++; } // Check if visited node's // value is not null and node's // right child value is even, // increment its value by 1 if (root.right != null && root.right.value % 2 == 0) { root.right.value += 1; count_of_changes++; } // Recursive call for left node dfs(root.left); // Recursive call for right node dfs(root.right); } // Function to find // the min changes needed public static int minCount(Node root) { // Initial value for // final changes needed count_of_changes = 0; // Base case to check // if root is null if (root == null ) return count_of_changes; if (root.value != 1) { // Add root_value - 1 to the ans count_of_changes += root.value - 1; // Set root->Value to 1 root.value = 1; } // DFS Function call dfs(root); // Return the final count return count_of_changes; } public static void Main( string [] args){ // Taking input Node root = newNode(1); root.left = newNode(2); root.right = newNode(2); root.left.left = newNode(5); root.right.left = newNode(6); root.right.right = newNode(8); // Function call Console.WriteLine(minCount(root)); } } // This code is contributed by entertain2022. |
Javascript
<script> // JavaScript code to implement the above approach // To store the final changes needed let count_of_changes = 0 class Node{ constructor(data = 0,left = null ,right = null ){ this .data = data this .left = left this .right = right } } // Utility function to create new // tree node function newNode(data){ let temp = new Node() temp.value = data temp.left = temp.right = null return temp } // DFS function to convert // binary tree to proper tree function dfs(root){ // Check if given root is null // base case if (root == null ) return // Check if visited node's // left value is not null and // node's left child value is odd // decrement its value by 1 if (root.left && root.left.value % 2 == 1){ root.left.value -= 1 count_of_changes += 1 } // Check if visited node's // value is not null and node's // right child value is even, // increment its value by 1 if (root.right && root.right.value % 2 == 0){ root.right.value += 1 count_of_changes += 1 } // Recursive call for left node dfs(root.left) // Recursive call for right node dfs(root.right) } // Function to find // the min changes needed function minCount(root){ // Initial value for // final changes needed count_of_changes = 0 // Base case to check // if root is null if (root == null ) return count_of_changes if (root.value != 1){ // Add root_value - 1 to the ans count_of_changes += root.value - 1 // Set root.Value to 1 root.value = 1 } // DFS Function call dfs(root) // Return the final count return count_of_changes } // Driver Code // Taking input let root = newNode(1) root.left = newNode(2) root.right = newNode(2) root.left.left = newNode(5) root.right.left = newNode(6) root.right.right = newNode(8) // Function call document.write(minCount(root), "</br>" ) // This code is contributed by shinjanpatra </script> |
3
Time Complexity: O(V), where V is the count of vertices in given Tree
Auxiliary Space: O(H), which is the size of the stack for function calls, where H is the height of the tree.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!