Given a 6 digit number, calculate the minimum number of digits that needs to be replaced in order to make the number magical. The number is considered magical if the sum of first three digits equals to the sum of last three digits. In one operation, we can choose a digit at any position and replace it with any arbitrary digit.
Examples :
Input: 123456 Output: 2 Explanation : Replace 4 with 0 and 5 with 0, then number = 123006, where 1 + 2 + 3 = 0 + 0 + 6, hence number of replacements done = 2 Input: 111000 Output: 1 Explanation: Replace 0 with 3, then number = 111030, where 1 + 1 + 1 = 0 + 3 + 0, hence number of replacements done = 1
Approach: The best approach will be to check with all the magical numbers and the number of replacements needed. Run a loop that generates all 6 digit numbers. Check if that number is magical, if it is then simply calculate the number of replacements needs to be done and compare with the ans, if it is smaller then make it the ans and at the end return ans.
Below is the implementation of the above approach.
C++
// CPP program to make a number magical #include "bits/stdc++.h" using namespace std; // function to calculate the minimal changes int calculate(string s) { // maximum digits that can be changed int ans = 6; // nested loops to generate all 6 // digit numbers for ( int i = 0; i < 10; ++i) { for ( int j = 0; j < 10; ++j) { for ( int k = 0; k < 10; ++k) { for ( int l = 0; l < 10; ++l) { for ( int m = 0; m < 10; ++m) { for ( int n = 0; n < 10; ++n) { if (i + j + k == l + m + n) { // counter to count the number // of change required int c = 0; // if first digit is equal if (i != s[0] - '0' ) c++; // if 2nd digit is equal if (j != s[1] - '0' ) c++; // if 3rd digit is equal if (k != s[2] - '0' ) c++; // if 4th digit is equal if (l != s[3] - '0' ) c++; // if 5th digit is equal if (m != s[4] - '0' ) c++; // if 6th digit is equal if (n != s[5] - '0' ) c++; // checks if less than the // previous calculate changes if (c < ans) ans = c; } } } } } } } // returns the answer return ans; } // driver program to test the above function int main() { // number stored in string string s = "123456" ; // prints the minimum operations cout << calculate(s); } |
Java
// java program to make a number magical import java.io.*; class GFG { // function to calculate the minimal changes static int calculate(String s) { // maximum digits that can be changed int ans = 6 ; // nested loops to generate // all 6 digit numbers for ( int i = 0 ; i < 10 ; ++i) { for ( int j = 0 ; j < 10 ; ++j) { for ( int k = 0 ; k < 10 ; ++k) { for ( int l = 0 ; l < 10 ; ++l) { for ( int m = 0 ; m < 10 ; ++m) { for ( int n = 0 ; n < 10 ; ++n) { if (i + j + k == l + m + n) { // counter to count the number // of change required int c = 0 ; // if first digit is equal if (i != s.charAt( 0 ) - '0' ) c++; // if 2nd digit is equal if (j != s.charAt( 1 ) - '0' ) c++; // if 3rd digit is equal if (k != s.charAt( 2 ) - '0' ) c++; // if 4th digit is equal if (l != s.charAt( 3 ) - '0' ) c++; // if 5th digit is equal if (m != s.charAt( 4 ) - '0' ) c++; // if 6th digit is equal if (n != s.charAt( 5 ) - '0' ) c++; // checks if less than the // previous calculate changes if (c < ans) ans = c; } } } } } } } // returns the answer return ans; } // Driver code static public void main (String[] args) { // number stored in string String s = "123456" ; // prints the minimum operations System.out.println(calculate(s)); } } // This code is contributed by vt_m. |
Python3
# Python 3 program to make a number magical # function to calculate the minimal changes def calculate( s): # maximum digits that can be changed ans = 6 # nested loops to generate all 6 # digit numbers for i in range ( 10 ): for j in range ( 10 ): for k in range ( 10 ): for l in range ( 10 ): for m in range ( 10 ): for n in range ( 10 ): if (i + j + k = = l + m + n): # counter to count the number # of change required c = 0 # if first digit is equal if (i ! = ord (s[ 0 ]) - ord ( '0' )): c + = 1 # if 2nd digit is equal if (j ! = ord (s[ 1 ]) - ord ( '0' )): c + = 1 # if 3rd digit is equal if (k ! = ord (s[ 2 ]) - ord ( '0' )): c + = 1 # if 4th digit is equal if (l ! = ord (s[ 3 ]) - ord ( '0' )): c + = 1 # if 5th digit is equal if (m ! = ord (s[ 4 ]) - ord ( '0' )): c + = 1 # if 6th digit is equal if (n ! = ord (s[ 5 ]) - ord ( '0' )): c + = 1 # checks if less than the # previous calculate changes if (c < ans): ans = c # returns the answer return ans # driver program to test the above function if __name__ = = "__main__" : # number stored in string s = "123456" # prints the minimum operations print (calculate(s)) |
C#
// C# program to make a number magical using System; class GFG { // function to calculate the minimal changes static int calculate( string s) { // maximum digits that can be changed int ans = 6; // nested loops to generate // all 6 digit numbers for ( int i = 0; i < 10; ++i) { for ( int j = 0; j < 10; ++j) { for ( int k = 0; k < 10; ++k) { for ( int l = 0; l < 10; ++l) { for ( int m = 0; m < 10; ++m) { for ( int n = 0; n < 10; ++n) { if (i + j + k == l + m + n) { // counter to count the number // of change required int c = 0; // if first digit is equal if (i != s[0] - '0' ) c++; // if 2nd digit is equal if (j != s[1] - '0' ) c++; // if 3rd digit is equal if (k != s[2] - '0' ) c++; // if 4th digit is equal if (l != s[3] - '0' ) c++; // if 5th digit is equal if (m != s[4] - '0' ) c++; // if 6th digit is equal if (n != s[5] - '0' ) c++; // checks if less than the // previous calculate changes if (c < ans) ans = c; } } } } } } } // returns the answer return ans; } // Driver code static public void Main () { // number stored in string string s = "123456" ; // prints the minimum operations Console.WriteLine(calculate(s)); } } // This code is contributed by vt_m. |
PHP
<?php // PHP program to make a number magical // function to calculate // the minimal changes function calculate( $s ) { // maximum digits that // can be changed $ans = 6; // nested loops to generate // all 6 digit numbers for ( $i = 0; $i < 10; ++ $i ) { for ( $j = 0; $j < 10; ++ $j ) { for ( $k = 0; $k < 10; ++ $k ) { for ( $l = 0; $l < 10; ++ $l ) { for ( $m = 0; $m < 10; ++ $m ) { for ( $n = 0; $n < 10; ++ $n ) { if ( $i + $j + $k == $l + $m + $n ) { // counter to count the number // of change required $c = 0; // if first digit is equal if ( $i != $s [0] - '0' ) $c ++; // if 2nd digit is equal if ( $j != $s [1] - '0' ) $c ++; // if 3rd digit is equal if ( $k != $s [2] - '0' ) $c ++; // if 4th digit is equal if ( $l != $s [3] - '0' ) $c ++; // if 5th digit is equal if ( $m != $s [4] - '0' ) $c ++; // if 6th digit is equal if ( $n != $s [5] - '0' ) $c ++; // checks if less than the // previous calculate changes if ( $c < $ans ) $ans = $c ; } } } } } } } // returns the answer return $ans ; } // Driver Code // number stored in string $s = "123456" ; // prints the minimum operations echo calculate( $s ); // This code is contributed by ajit. ?> |
Javascript
<script> // Javascript program to make a number magical // Function to calculate the minimal changes function calculate(s) { // Maximum digits that can be changed let ans = 6; // Nested loops to generate // all 6 digit numbers for (let i = 0; i < 10; ++i) { for (let j = 0; j < 10; ++j) { for (let k = 0; k < 10; ++k) { for (let l = 0; l < 10; ++l) { for (let m = 0; m < 10; ++m) { for (let n = 0; n < 10; ++n) { if (i + j + k == l + m + n) { // Counter to count the number // of change required let c = 0; // If first digit is equal if (i != s[0] - '0' ) c++; // If 2nd digit is equal if (j != s[1] - '0' ) c++; // If 3rd digit is equal if (k != s[2] - '0' ) c++; // If 4th digit is equal if (l != s[3] - '0' ) c++; // If 5th digit is equal if (m != s[4] - '0' ) c++; // If 6th digit is equal if (n != s[5] - '0' ) c++; // Checks if less than the // previous calculate changes if (c < ans) ans = c; } } } } } } } // Returns the answer return ans; } // Driver code // Number stored in string let s = "123456" ; // Prints the minimum operations document.write(calculate(s)); // This code is contributed by suresh07 </script> |
2
Time complexity : O( 10^6)
Auxiliary Space : O(1)
If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!