Given an array arr[] of size N and integer Y, the task is to find a minimum of all the differences between the maximum and minimum elements in all the sub-arrays of size Y.
Examples:
Input: arr[] = { 3, 2, 4, 5, 6, 1, 9 } Y = 3
Output: 2
Explanation:
All subarrays of length = 3 are:
{3, 2, 4} where maximum element = 4 and minimum element = 2 difference = 2
{2, 4, 5} where maximum element = 5 and minimum element = 2 difference = 3
{4, 5, 6} where maximum element = 6 and minimum element = 4 difference = 2
{5, 6, 1} where maximum element = 6 and minimum element = 1 difference = 5
{6, 1, 9} where maximum element = 9 and minimum element = 6 difference = 3
Out of these, the minimum is 2.
Input: arr[] = { 1, 2, 3, 3, 2, 2 } Y = 4
Output: 1
Explanation:
All subarrays of length = 4 are:
{1, 2, 3, 3} maximum element = 3 and minimum element = 1 difference = 2
{2, 3, 3, 2} maximum element = 3 and minimum element = 2 difference = 1
{3, 3, 2, 2} maximum element = 3 and minimum element = 2 difference = 1
Out of these, the minimum is 1.
Naive Approach: The naive idea is to traverse for every index i in the range [0, N – Y] use another loop to traverse from ith index to (i + Y – 1)th index and then calculate the minimum and maximum elements in a subarray of size Y and hence calculate the difference of maximum and minimum element for that ith iteration. Finally, by keeping a check on differences, evaluate the minimum difference.
C++
#include<bits/stdc++.h>using namespace std;// function to calculate the Min difference //between maximum and minimum element//in all Y size subarraysint max_difference(int* arr, int N, int Y){ // variable to store Min difference //between maximum and minimum element/ int ans = INT_MAX; for (int i = 0; i <= N - Y; i++) { int maxi = INT_MIN; int mini = INT_MAX; for (int j = i; j <= i + Y - 1; j++) { maxi = max(maxi, arr[j]);// finding the maximum element. mini = min(mini, arr[j]);// finding the minimum element. } ans = min(ans, maxi -mini); } return ans;//returning the final answer.}// Driver Codeint main(){ // Given array arr[] int arr[] = { 1, 2, 3, 3, 2, 2 }; int N = sizeof arr / sizeof arr[0]; // Given subarray size int Y = 4; // Function Call cout << max_difference(arr, N, Y); return 0;} |
Python3
import sys# function to calculate the Min difference #between maximum and minimum element#in all Y size subarraysdef max_difference(arr, N, Y): # variable to store Min difference #between maximum and minimum element/ ans = sys.maxsize; for i in range(0,N-Y+1): maxi = -sys.maxsize; mini = sys.maxsize; for j in range (i,i+Y): maxi = max(maxi, arr[j]);# finding the maximum element. mini = min(mini, arr[j]);# finding the minimum element. ans = min(ans, maxi -mini); return ans;#returning the final answer. # Driver Code# Given array arr[]arr = [ 1, 2, 3, 3, 2, 2 ];N = len(arr);# Given subarray sizeY = 4;# Function Callprint(max_difference(arr, N, Y)); |
Javascript
// function to calculate the Min difference //between maximum and minimum element//in all Y size subarraysfunction max_difference(arr, N, Y) { // variable to store Min difference //between maximum and minimum element/ let ans = Infinity; for (let i = 0; i <= N - Y; i++) { let maxi = -Infinity; let mini = Infinity; for (let j = i; j <= i + Y - 1; j++) { maxi = Math.max(maxi, arr[j]);// finding the maximum element. mini = Math.min(mini, arr[j]);// finding the minimum element. } ans = Math.min(ans, maxi - mini); } return ans;//returning the final answer.}// Driver Code// Given array arr[]let arr = [1, 2, 3, 3, 2, 2];let N = arr.length;// Given subarray sizelet Y = 4;// Function Callconsole.log(max_difference(arr, N, Y)); |
C#
using System;class Gfg { // function to calculate the Min difference // between maximum and minimum element // in all Y size subarrays static int max_difference(int[] arr, int N, int Y) { // variable to store Min difference // between maximum and minimum element int ans = int.MaxValue; for (int i = 0; i <= N - Y; i++) { int maxi = int.MinValue; int mini = int.MaxValue; for (int j = i; j <= i + Y - 1; j++) { maxi = Math.Max( maxi, arr[j]); // finding the maximum element. mini = Math.Min( mini, arr[j]); // finding the minimum element. } ans = Math.Min(ans, maxi - mini); } return ans; // returning the final answer. } // Driver Code static void Main(string[] args) { // Given array arr[] int[] arr = { 1, 2, 3, 3, 2, 2 }; int N = arr.Length; // Given subarray size int Y = 4; // Function Call Console.WriteLine(max_difference(arr, N, Y)); }} |
Java
public class GFG { public static int maxDifference(int[] arr, int N, int Y) { // variable to store Min difference //between maximum and minimum element/ int ans = Integer.MAX_VALUE; for (int i = 0; i <= N - Y; i++) { int maxi = Integer.MIN_VALUE; int mini = Integer.MAX_VALUE; for (int j = i; j <= i + Y - 1; j++) { maxi = Math.max(maxi, arr[j]);// finding the maximum element. mini = Math.min(mini, arr[j]);// finding the minimum element. } ans = Math.min(ans, maxi - mini); } return ans;//returning the final answer. } public static void main(String[] args) { // Given array arr[] int[] arr = {1, 2, 3, 3, 2, 2}; int N = arr.length; // Given subarray size int Y = 4; // Function Call System.out.println(maxDifference(arr, N, Y)); }} |
1
Time Complexity: O(N*Y) where Y is the given subarray range and N is the size of the array.
Auxiliary Space: O(1)
Efficient Approach: The idea is to use the concept of the approach discussed in the Next Greater Element article. Below are the steps:
- Build two arrays maxarr[] and minarr[], where maxarr[] will store the index of the element which is next greater to the element at ith index and minarr[] will store the index of the next element which is less than the element at the ith index.
- Initialize a stack with 0 to store the indices in both the above cases.
- For each index, i in the range [0, N – Y], using a nested loop and sliding window approach form two arrays submax and submin. These arrays will store maximum and minimum elements in the subarray in ith iteration.
- Finally, calculate the minimum difference.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to get the maximum of all // the subarrays of size Y vector<int> get_submaxarr(int* arr, int n, int y) { int j = 0; stack<int> stk; // ith index of maxarr array // will be the index upto which // Arr[i] is maximum vector<int> maxarr(n); stk.push(0); for (int i = 1; i < n; i++) { // Stack is used to find the // next larger element and // keeps track of index of // current iteration while (stk.empty() == false and arr[i] > arr[stk.top()]) { maxarr[stk.top()] = i - 1; stk.pop(); } stk.push(i); } // Loop for remaining indexes while (!stk.empty()) { maxarr[stk.top()] = n - 1; stk.pop(); } vector<int> submax; for (int i = 0; i <= n - y; i++) { // j < i used to keep track // whether jth element is // inside or outside the window while (maxarr[j] < i + y - 1 or j < i) { j++; } submax.push_back(arr[j]); } // Return submax return submax; } // Function to get the minimum for // all subarrays of size Y vector<int> get_subminarr(int* arr, int n, int y) { int j = 0; stack<int> stk; // ith index of minarr array // will be the index upto which // Arr[i] is minimum vector<int> minarr(n); stk.push(0); for (int i = 1; i < n; i++) { // Stack is used to find the // next smaller element and // keeping track of index of // current iteration while (stk.empty() == false and arr[i] < arr[stk.top()]) { minarr[stk.top()] = i; stk.pop(); } stk.push(i); } // Loop for remaining indexes while (!stk.empty()) { minarr[stk.top()] = n; stk.pop(); } vector<int> submin; for (int i = 0; i <= n - y; i++) { // j < i used to keep track // whether jth element is inside // or outside the window while (minarr[j] <= i + y - 1 or j < i) { j++; } submin.push_back(arr[j]); } // Return submin return submin; } // Function to get minimum difference void getMinDifference(int Arr[], int N, int Y) { // Create submin and submax arrays vector<int> submin = get_subminarr(Arr, N, Y); vector<int> submax = get_submaxarr(Arr, N, Y); // Store initial difference int minn = submax[0] - submin[0]; int b = submax.size(); for (int i = 1; i < b; i++) { // Calculate temporary difference int dif = submax[i] - submin[i]; minn = min(minn, dif); } // Final minimum difference cout << minn << "\n"; } // Driver Code int main() { // Given array arr[] int arr[] = { 1, 2, 3, 3, 2, 2 }; int N = sizeof arr / sizeof arr[0]; // Given subarray size int Y = 4; // Function Call getMinDifference(arr, N, Y); return 0; } |
Java
// Java program for the above approachimport java.util.*;class GFG{// Function to get the maximum of all// the subarrays of size Ystatic Vector<Integer> get_submaxarr(int[] arr, int n, int y){ int j = 0; Stack<Integer> stk = new Stack<Integer>(); // ith index of maxarr array // will be the index upto which // Arr[i] is maximum int[] maxarr = new int[n]; Arrays.fill(maxarr,0); stk.push(0); for(int i = 1; i < n; i++) { // Stack is used to find the // next larger element and // keeps track of index of // current iteration while (stk.size() != 0 && arr[i] > arr[stk.peek()]) { maxarr[stk.peek()] = i - 1; stk.pop(); } stk.push(i); } // Loop for remaining indexes while (stk.size() != 0) { maxarr[stk.size()] = n - 1; stk.pop(); } Vector<Integer> submax = new Vector<Integer>(); for(int i = 0; i <= n - y; i++) { // j < i used to keep track // whether jth element is // inside or outside the window while (maxarr[j] < i + y - 1 || j < i) { j++; } submax.add(arr[j]); } // Return submax return submax;} // Function to get the minimum for// all subarrays of size Ystatic Vector<Integer> get_subminarr(int[] arr, int n, int y){ int j = 0; Stack<Integer> stk = new Stack<Integer>(); // ith index of minarr array // will be the index upto which // Arr[i] is minimum int[] minarr = new int[n]; Arrays.fill(minarr,0); stk.push(0); for(int i = 1; i < n; i++) { // Stack is used to find the // next smaller element and // keeping track of index of // current iteration while (stk.size() != 0 && arr[i] < arr[stk.peek()]) { minarr[stk.peek()] = i; stk.pop(); } stk.push(i); } // Loop for remaining indexes while (stk.size() != 0) { minarr[stk.peek()] = n; stk.pop(); } Vector<Integer> submin = new Vector<Integer>(); for(int i = 0; i <= n - y; i++) { // j < i used to keep track // whether jth element is inside // or outside the window while (minarr[j] <= i + y - 1 || j < i) { j++; } submin.add(arr[j]); } // Return submin return submin;} // Function to get minimum differencestatic void getMinDifference(int[] Arr, int N, int Y){ // Create submin and submax arrays Vector<Integer> submin = get_subminarr(Arr, N, Y); Vector<Integer> submax = get_submaxarr(Arr, N, Y); // Store initial difference int minn = submax.get(0) - submin.get(0); int b = submax.size(); for(int i = 1; i < b; i++) { // Calculate temporary difference int dif = submax.get(i) - submin.get(i) + 1; minn = Math.min(minn, dif); } // Final minimum difference System.out.print(minn);}// Driver codepublic static void main(String[] args){ // Given array arr[] int[] arr = { 1, 2, 3, 3, 2, 2 }; int N = arr.length; // Given subarray size int Y = 4; // Function Call getMinDifference(arr, N, Y);}}// This code is contributed by decode2207 |
Python3
# Python3 program for the above approach # Function to get the maximum of all # the subarrays of size Y def get_submaxarr(arr, n, y): j = 0 stk = [] # ith index of maxarr array # will be the index upto which # Arr[i] is maximum maxarr = [0] * n stk.append(0) for i in range(1, n): # Stack is used to find the # next larger element and # keeps track of index of # current iteration while (len(stk) > 0 and arr[i] > arr[stk[-1]]): maxarr[stk[-1]] = i - 1 stk.pop() stk.append(i) # Loop for remaining indexes while (stk): maxarr[stk[-1]] = n - 1 stk.pop() submax = [] for i in range(n - y + 1): # j < i used to keep track # whether jth element is # inside or outside the window while (maxarr[j] < i + y - 1 or j < i): j += 1 submax.append(arr[j]) # Return submax return submax# Function to get the minimum for # all subarrays of size Y def get_subminarr(arr, n, y): j = 0 stk = [] # ith index of minarr array # will be the index upto which # Arr[i] is minimum minarr = [0] * n stk.append(0) for i in range(1 , n): # Stack is used to find the # next smaller element and # keeping track of index of # current iteration while (stk and arr[i] < arr[stk[-1]]): minarr[stk[-1]] = i stk.pop() stk.append(i) # Loop for remaining indexes while (stk): minarr[stk[-1]] = n stk.pop() submin = [] for i in range(n - y + 1): # j < i used to keep track # whether jth element is inside # or outside the window while (minarr[j] <= i + y - 1 or j < i): j += 1 submin.append(arr[j]) # Return submin return submin # Function to get minimum difference def getMinDifference(Arr, N, Y): # Create submin and submax arrays submin = get_subminarr(Arr, N, Y) submax = get_submaxarr(Arr, N, Y) # Store initial difference minn = submax[0] - submin[0] b = len(submax) for i in range(1, b): # Calculate temporary difference diff = submax[i] - submin[i] minn = min(minn, diff) # Final minimum difference print(minn) # Driver code# Given array arr[]arr = [ 1, 2, 3, 3, 2, 2 ]N = len(arr)# Given subarray sizeY = 4# Function callgetMinDifference(arr, N, Y) # This code is contributed by Stuti Pathak |
C#
// C# program for the above approachusing System;using System.Collections.Generic;class GFG { // Function to get the maximum of all // the subarrays of size Y static List<int> get_submaxarr(int[] arr, int n, int y) { int j = 0; Stack<int> stk = new Stack<int>(); // ith index of maxarr array // will be the index upto which // Arr[i] is maximum int[] maxarr = new int[n]; Array.Fill(maxarr,0); stk.Push(0); for (int i = 1; i < n; i++) { // Stack is used to find the // next larger element and // keeps track of index of // current iteration while (stk.Count!=0 && arr[i] > arr[stk.Peek()]) { maxarr[stk.Peek()] = i - 1; stk.Pop(); } stk.Push(i); } // Loop for remaining indexes while (stk.Count!=0) { maxarr[stk.Count] = n - 1; stk.Pop(); } List<int> submax = new List<int>(); for (int i = 0; i <= n - y; i++) { // j < i used to keep track // whether jth element is // inside or outside the window while (maxarr[j] < i + y - 1 || j < i) { j++; } submax.Add(arr[j]); } // Return submax return submax; } // Function to get the minimum for // all subarrays of size Y static List<int> get_subminarr(int[] arr, int n, int y) { int j = 0; Stack<int> stk = new Stack<int>(); // ith index of minarr array // will be the index upto which // Arr[i] is minimum int[] minarr = new int[n]; Array.Fill(minarr,0); stk.Push(0); for (int i = 1; i < n; i++) { // Stack is used to find the // next smaller element and // keeping track of index of // current iteration while (stk.Count!=0 && arr[i] < arr[stk.Peek()]) { minarr[stk.Peek()] = i; stk.Pop(); } stk.Push(i); } // Loop for remaining indexes while (stk.Count!=0) { minarr[stk.Peek()] = n; stk.Pop(); } List<int> submin = new List<int>(); for (int i = 0; i <= n - y; i++) { // j < i used to keep track // whether jth element is inside // or outside the window while (minarr[j] <= i + y - 1 || j < i) { j++; } submin.Add(arr[j]); } // Return submin return submin; } // Function to get minimum difference static void getMinDifference(int[] Arr, int N, int Y) { // Create submin and submax arrays List<int> submin = get_subminarr(Arr, N, Y); List<int> submax = get_submaxarr(Arr, N, Y); // Store initial difference int minn = submax[0] - submin[0]; int b = submax.Count; for (int i = 1; i < b; i++) { // Calculate temporary difference int dif = submax[i] - submin[i] + 1; minn = Math.Min(minn, dif); } // Final minimum difference Console.WriteLine(minn); } static void Main() { // Given array arr[] int[] arr = { 1, 2, 3, 3, 2, 2 }; int N = arr.Length; // Given subarray size int Y = 4; // Function Call getMinDifference(arr, N, Y); }}// This code is contributed by rameshtravel07. |
Javascript
<script>// Javascript program for the above approach // Function to get the maximum of all // the subarrays of size Y function get_submaxarr(arr, n, y) { var j = 0; var stk = []; // ith index of maxarr array // will be the index upto which // Arr[i] is maximum var maxarr = Array(n); stk.push(0); for (var i = 1; i < n; i++) { // Stack is used to find the // next larger element and // keeps track of index of // current iteration while (stk.length!=0 && arr[i] > arr[stk[stk.length-1]]) { maxarr[stk[stk.length-1]] = i - 1; stk.pop(); } stk.push(i); } // Loop for remaining indexes while (stk.length!=0) { maxarr[stk[stk.length-1]] = n - 1; stk.pop(); } var submax = []; for (var i = 0; i <= n - y; i++) { // j < i used to keep track // whether jth element is // inside or outside the window while (maxarr[j] < i + y - 1 || j < i) { j++; } submax.push(arr[j]); } // Return submax return submax; } // Function to get the minimum for // all subarrays of size Y function get_subminarr(arr, n, y) { var j = 0; var stk = []; // ith index of minarr array // will be the index upto which // Arr[i] is minimum var minarr = Array(n); stk.push(0); for (var i = 1; i < n; i++) { // Stack is used to find the // next smaller element and // keeping track of index of // current iteration while (stk.length!=0 && arr[i] < arr[stk[stk.length-1]]) { minarr[stk[stk.length-1]] = i; stk.pop(); } stk.push(i); } // Loop for remaining indexes while (stk.length!=0) { minarr[stk[stk.length-1]] = n; stk.pop(); } var submin = []; for (var i = 0; i <= n - y; i++) { // j < i used to keep track // whether jth element is inside // or outside the window while (minarr[j] <= i + y - 1 || j < i) { j++; } submin.push(arr[j]); } // Return submin return submin; } // Function to get minimum difference function getMinDifference(Arr, N, Y) { // Create submin and submax arrays var submin = get_subminarr(Arr, N, Y); var submax = get_submaxarr(Arr, N, Y); // Store initial difference var minn = submax[0] - submin[0]; var b = submax.length; for (var i = 1; i < b; i++) { // Calculate temporary difference var dif = submax[i] - submin[i]; minn = Math.min(minn, dif); } // Final minimum difference document.write( minn + "<br>"); } // Driver Code // Given array arr[] var arr = [1, 2, 3, 3, 2, 2]; var N = arr.length // Given subarray size var Y = 4; // Function Call getMinDifference(arr, N, Y); </script> |
1
Time Complexity: O(N) where N is the size of the array.
Auxiliary Space: O(N) where N is the size of the array.
Related Topic: Subarrays, Subsequences, and Subsets in Array
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!
