Saturday, January 11, 2025
Google search engine
HomeLanguagesDynamic ProgrammingMin cost to color all walls such that no adjacent walls have...

Min cost to color all walls such that no adjacent walls have same color

There is a row of N walls in Geeksland. The king of Geeksland ordered Alexa to color all the walls on the occasion of New Year. Alexa can color each wall with one of the K colors. The cost associated with coloring each wall with a particular color is represented by a 2D costs array of size N * K. For example, costs[0][0] is the cost of coloring wall 0 with color 0; costs[1][2] is the cost of coloring wall 1 with color 2, and so on… Find the minimum cost to color all the walls such that no two adjacent walls have the same color.

Note: If you are not able to paint all the walls, then you should return -1.

Examples:

Input: N = 4, K = 3, costs[][] = {{1, 5, 7}, {5, 8, 4}, {3, 2, 9}, {1, 2, 4}}
Output: 8
Explanation: Paint wall 0 with color 0. Cost = 1
Paint wall 1 with color 2. Cost = 4
Paint wall 2 with color 1. Cost = 2
Paint wall 3 with color 0. Cost = 1
Total Cost = 1 + 4 + 2 + 1 = 8

Input: N = 5, K = 1, costs[][] = {{5}, {4}, {9}, {2}, {1}}
Output: -1
Explanation: It is not possible to color all the walls under the given conditions.

Approach: To solve the problem follow the below idea:

This is a classic knapsack problem. To calculate the minimum cost to color, the idea is to use dynamic programming. It creates a 2D vector called dp with n rows and k columns, where dp[i][j] represents the minimum cost of painting the first i houses, where the ith house is painted with the jth color.

Below are the steps for the above approach:

  • Define dp[n][k], where dp[i][j] means the minimum cost for wall i with color j.
  • Initial value: dp[0][j] = costs[0][j]. For others, dp[i][j] = INT_MAX, i ≥ 1.
  • Recurrence relation: dp[i][j] = min(dp[i][j], dp[i – 1][k] + cost[i][j]), where k != j.
  • Final state: Min(dp[n – 1][k]).

Below is the implementation of the above approach:

C++




// C++ code for the above approach:
#include <bits/stdc++.h>
using namespace std;
int minCost(vector<vector<int> >& costs)
{
    int n = costs.size();
    int k = costs[0].size();
    if (n > 1 && k == 1)
        return -1;
    vector<vector<int> > dp(n, vector<int>(k, 0));
    for (int i = 0; i < k; i++) {
        dp[0][i] = costs[0][i];
    }
    for (int itr = 1; itr < n; itr++) {
        for (int i = 0; i < k; i++) {
            int mini = INT_MAX;
            for (int j = 0; j < k; j++) {
                if (i == j)
                    continue;
                else
                    mini = min(mini, dp[itr - 1][j]);
            }
            dp[itr][i] = costs[itr][i] + mini;
        }
    }
    int ans = INT_MAX;
    for (int i = 0; i < k; i++) {
        ans = min(ans, dp[n - 1][i]);
    }
    if (ans == INT_MAX)
        return 0;
    return ans;
}
 
// Drivers code
int main()
{
 
    vector<vector<int> > costs = {
        { 1, 5, 7 }, { 5, 8, 4 }, { 3, 2, 9 }, { 1, 2, 4 }
    };
 
    // Function Call
    int ans = minCost(costs);
    cout << ans;
    return 0;
}


Java




// Java code for the above approach:
 
import java.util.*;
 
class GFG {
    static int minCost(int[][] costs)
    {
        int n = costs.length;
        int k = costs[0].length;
        if (n > 1 && k == 1)
            return -1;
        int[][] dp = new int[n][k];
        for (int i = 0; i < k; i++)
            dp[0][i] = costs[0][i];
        for (int itr = 1; itr < n; itr++) {
            for (int i = 0; i < k; i++) {
                int mini = Integer.MAX_VALUE;
                for (int j = 0; j < k; j++) {
                    if (i == j)
                        continue;
                    else
                        mini = Math.min(mini,
                                        dp[itr - 1][j]);
                }
                dp[itr][i] = costs[itr][i] + mini;
            }
        }
        int ans = Integer.MAX_VALUE;
        for (int i = 0; i < k; i++)
            ans = Math.min(ans, dp[n - 1][i]);
        if (ans == Integer.MAX_VALUE)
            return 0;
        return ans;
    }
 
    public static void main(String[] args)
    {
        int[][] costs = { { 1, 5, 7 },
                          { 5, 8, 4 },
                          { 3, 2, 9 },
                          { 1, 2, 4 } };
        int ans = minCost(costs);
        System.out.println(ans);
    }
}


Python3




# Python3 code for the above approach:
 
 
def min_cost(costs):
    n = len(costs)
    k = len(costs[0])
    if n > 1 and k == 1:
        return -1
    dp = [[0] * k for _ in range(n)]
    for i in range(k):
        dp[0][i] = costs[0][i]
    for itr in range(1, n):
        for i in range(k):
            mini = float('inf')
            for j in range(k):
                if i == j:
                    continue
                else:
                    mini = min(mini, dp[itr - 1][j])
            dp[itr][i] = costs[itr][i] + mini
    ans = float('inf')
    for i in range(k):
        ans = min(ans, dp[n - 1][i])
    if ans == float('inf'):
        return 0
    return ans
 
 
# Driver code
costs = [[1, 5, 7], [5, 8, 4], [3, 2, 9], [1, 2, 4]]
ans = min_cost(costs)
print(ans)


C#




// C# code for the above approach:
 
using System;
 
class GFG {
    static int MinCost(int[][] costs)
    {
        int n = costs.Length;
        int k = costs[0].Length;
 
        if (n > 1 && k == 1)
            return -1;
 
        int[][] dp = new int[n][];
        for (int i = 0; i < n; i++)
            dp[i] = new int[k];
 
        for (int i = 0; i < k; i++)
            dp[0][i] = costs[0][i];
 
        for (int itr = 1; itr < n; itr++) {
            for (int i = 0; i < k; i++) {
                int mini = int.MaxValue;
 
                for (int j = 0; j < k; j++) {
                    if (i == j)
                        continue;
                    else
                        mini = Math.Min(mini,
                                        dp[itr - 1][j]);
                }
 
                dp[itr][i] = costs[itr][i] + mini;
            }
        }
 
        int ans = int.MaxValue;
        for (int i = 0; i < k; i++)
            ans = Math.Min(ans, dp[n - 1][i]);
 
        if (ans == int.MaxValue)
            return 0;
        return ans;
    }
 
    static void Main(string[] args)
    {
        int[][] costs = new int[][] {
            new int[] { 1, 5, 7 }, new int[] { 5, 8, 4 },
            new int[] { 3, 2, 9 }, new int[] { 1, 2, 4 }
        };
 
        int ans = MinCost(costs);
        Console.WriteLine(ans);
    }
}


Javascript




// JavaScript code for the above approach:
 
function minCost(costs) {
  const n = costs.length;
  const k = costs[0].length;
  if (n > 1 && k === 1) {
    return -1;
  }
  const dp = new Array(n).fill().map(() => new Array(k).fill(0));
  for (let i = 0; i < k; i++) {
    dp[0][i] = costs[0][i];
  }
  for (let itr = 1; itr < n; itr++) {
    for (let i = 0; i < k; i++) {
      let mini = Infinity;
      for (let j = 0; j < k; j++) {
        if (i === j) {
          continue;
        } else {
          mini = Math.min(mini, dp[itr - 1][j]);
        }
      }
      dp[itr][i] = costs[itr][i] + mini;
    }
  }
  let ans = Infinity;
  for (let i = 0; i < k; i++) {
    ans = Math.min(ans, dp[n - 1][i]);
  }
  if (ans === Infinity) {
    return 0;
  }
  return ans;
}
 
// Driver code
const costs = [
  [1, 5, 7],
  [5, 8, 4],
  [3, 2, 9],
  [1, 2, 4],
];
const ans = minCost(costs);
console.log(ans);


Output

8

Time Complexity: O(N*K*K)
Auxiliary Space: O(N*K)

Efficient approach: To solve the problem follow the below idea:

To optimize the code and avoid using a 2D array to store the costs of painting each house with each color, the code uses a 1D array dp to store the minimum cost of painting the previous house with each color, and a separate 1D array prev_dp to store the minimum cost of painting the previous house with each color in the previous iteration. This way, we can update the dp array in place without overwriting the values needed for the next iteration.

Below are the steps for the above approach:

  • Define the state: Let dp[i][j] be the minimum cost of painting the first i houses with the last house painted with color j.
  • Define the base case: The base case is when there are no houses to paint, so dp[0][j] = 0.
  • Define the recurrence relation: The recurrence relation is dp[i][j] = min(dp[i-1][k]) + cost[i-1][j], where k != j and cost[i-1][j] is the cost of painting house i-1 with color j.
  • Define the final answer: The final answer is min(dp[N][j]).
  • Implement the solution: The given code implements the above steps by using two arrays dp and prev_dp to store the minimum cost of painting the previous i-1 houses and the current i houses respectively. It first initializes the dp array with the cost of painting the first house with each color. Then, for each subsequent house, it calculates the minimum cost of painting the house with each color while ensuring that no two adjacent houses have the same color. Finally, it returns the minimum value in the dp array as the answer.

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum cost of painting n houses with k colors
int minCost(vector<vector<int> >& costs)
{
    // Get the number of houses and colors
    int n = costs.size();
    int k = costs[0].size();
 
    // Check for invalid input where there are more than 1 houses but only 1 color
    if (n > 1 && k == 1)
        return -1;
 
    // Initialize two vectors to keep track of minimum costs of painting the previous and current house
    vector<int> dp(k, 0);
    vector<int> prev_dp(k, 0);
 
    // Set the initial minimum costs of painting the first house with each color
    for (int i = 0; i < k; i++) {
        dp[i] = costs[0][i];
    }
 
    // Iterate through the remaining houses
    for (int i = 1; i < n; i++) {
        int min1 = INT_MAX, min2 = INT_MAX;
 
        // Find the minimum and second minimum cost of painting the previous house with different colors
        for (int j = 0; j < k; j++) {
            if (dp[j] < min1) {
                min2 = min1;
                min1 = dp[j];
            }
            else if (dp[j] < min2) {
                min2 = dp[j];
            }
        }
 
        // Calculate the minimum cost of painting the current house with each color
        for (int j = 0; j < k; j++) {
            if (dp[j] == min1) {
                dp[j] = min2 + costs[i][j];
            }
            else {
                dp[j] = min1 + costs[i][j];
            }
        }
    }
 
    // Return the minimum cost of painting the last house
    return *min_element(dp.begin(), dp.end());
}
 
// Main function
int main()
{
    // Example input
    vector<vector<int> > costs = {
        { 1, 5, 7 }, { 5, 8, 4 }, { 3, 2, 9 }, { 1, 2, 4 }
    };
 
    // Call the minCost function to get the result
    int ans = minCost(costs);
 
    // Output the result
    cout << ans << endl;
 
    return 0;
}


Java




import java.util.*;
 
public class Main {
    // Function to find the minimum cost of painting n houses with k colors
    public static int minCost(int[][] costs) {
        // Get the number of houses and colors
        int n = costs.length;
        int k = costs[0].length;
 
        // Check for invalid input where there are more than 1
       // houses but only 1 color
        if (n > 1 && k == 1)
            return -1;
 
        // Initialize two arrays to keep track of minimum costs
      // of painting the previous and current house
        int[] dp = new int[k];
        int[] prev_dp = new int[k];
 
        // Set the initial minimum costs of painting the first house
      // with each color
        for (int i = 0; i < k; i++) {
            dp[i] = costs[0][i];
        }
 
        // Iterate through the remaining houses
        for (int i = 1; i < n; i++) {
            int min1 = Integer.MAX_VALUE, min2 = Integer.MAX_VALUE;
 
            // Find the minimum and second minimum cost of painting the
          // previous house with different colors
            for (int j = 0; j < k; j++) {
                if (dp[j] < min1) {
                    min2 = min1;
                    min1 = dp[j];
                }
                else if (dp[j] < min2) {
                    min2 = dp[j];
                }
            }
 
            // Calculate the minimum cost of painting the current house
          // with each color
            for (int j = 0; j < k; j++) {
                if (dp[j] == min1) {
                    dp[j] = min2 + costs[i][j];
                }
                else {
                    dp[j] = min1 + costs[i][j];
                }
            }
        }
 
        // Return the minimum cost of painting the last house
        return Arrays.stream(dp).min().getAsInt();
    }
 
    // Main function
    public static void main(String[] args) {
        // Example input
        int[][] costs = {
            { 1, 5, 7 }, { 5, 8, 4 }, { 3, 2, 9 }, { 1, 2, 4 }
        };
 
        // Call the minCost function to get the result
        int ans = minCost(costs);
 
        // Output the result
        System.out.println(ans);
    }
}


Python




# python code for following approach
import sys
 
# Function to find the minimum cost of painting n houses with k colors
 
 
def minCost(costs):
    # Get the number of houses and colors
    n = len(costs)
    k = len(costs[0])
 
    # Check for invalid input where there are more than 1 houses but only 1 color
    if n > 1 and k == 1:
        return -1
 
    # Initialize two lists to keep track of minimum costs of painting the previous and current house
    dp = [0] * k
    prev_dp = [0] * k
 
    # Set the initial minimum costs of painting the first house with each color
    for i in range(k):
        dp[i] = costs[0][i]
 
    # Iterate through the remaining houses
    for i in range(1, n):
        min1 = sys.maxsize
        min2 = sys.maxsize
 
        # Find the minimum and second minimum cost of painting the previous house with different colors
        for j in range(k):
            if dp[j] < min1:
                min2 = min1
                min1 = dp[j]
            elif dp[j] < min2:
                min2 = dp[j]
 
        # Calculate the minimum cost of painting the current house with each color
        for j in range(k):
            if dp[j] == min1:
                dp[j] = min2 + costs[i][j]
            else:
                dp[j] = min1 + costs[i][j]
 
    # Return the minimum cost of painting the last house
    return min(dp)
 
 
# Main function
if __name__ == "__main__":
    # Example input
    costs = [
        [1, 5, 7], [5, 8, 4], [3, 2, 9], [1, 2, 4]
    ]
 
    # Call the minCost function to get the result
    ans = minCost(costs)
 
    # Output the result
    print(ans)
# This code generated by chetan bargal


Javascript




// Function to find the minimum cost of painting n houses with k colors
function minCost(costs)
{
    // Get the number of houses and colors
    const n = costs.length;
    const k = costs[0].length;
 
    // Check for invalid input where
    // there are more than 1 houses but only 1 color
    if (n > 1 && k === 1) {
        return -1;
    }
 
    // Initialize two arrays to keep track of
    // minimum costs of painting the previous and current house
    let dp = new Array(k).fill(0);
    let prev_dp = new Array(k).fill(0);
 
    // Set the initial minimum costs
    // of painting the first house with each color
    for (let i = 0; i < k; i++) {
        dp[i] = costs[0][i];
    }
 
    // Iterate through the remaining houses
    for (let i = 1; i < n; i++) {
        let min1 = Number.MAX_VALUE, min2 = Number.MAX_VALUE;
 
        // Find the minimum and second minimum cost
        // of painting the previous house with different colors
        for (let j = 0; j < k; j++) {
            if (dp[j] < min1) {
                min2 = min1;
                min1 = dp[j];
            } else if (dp[j] < min2) {
                min2 = dp[j];
            }
        }
 
        // Calculate the minimum cost of painting the current house with each color
        for (let j = 0; j < k; j++) {
            if (dp[j] === min1) {
                dp[j] = min2 + costs[i][j];
            } else {
                dp[j] = min1 + costs[i][j];
            }
        }
    }
 
    // Return the minimum cost of painting the last house
    return Math.min(...dp);
}
 
// Main function
function main() {
    // Example input
    const costs = [        [1, 5, 7], [5, 8, 4], [3, 2, 9], [1, 2, 4]
    ];
 
    // Call the minCost function to get the result
    const ans = minCost(costs);
 
    // Output the result
    console.log(ans);
}
 
// Call the main function
main();


C#




using System;
using System.Collections.Generic;
using System.Linq;
 
public class Gfg {
    // Function to find the minimum cost of painting n
    // houses with k colors
    public static int minCost(List<List<int> > costs)
    {
        // Get the number of houses and colors
        int n = costs.Count;
        int k = costs[0].Count;
 
        // Check for invalid input where there are more than
        // 1 houses but only 1 color
        if (n > 1 && k == 1)
            return -1;
 
        // Initialize two lists to keep track of minimum
        // costs of painting the previous and current house
        List<int> dp
            = new List<int>(Enumerable.Repeat(0, k));
        List<int> prev_dp
            = new List<int>(Enumerable.Repeat(0, k));
 
        // Set the initial minimum costs of painting the
        // first house with each color
        for (int i = 0; i < k; i++) {
            dp[i] = costs[0][i];
        }
 
        // Iterate through the remaining houses
        for (int i = 1; i < n; i++) {
            int min1 = int.MaxValue, min2 = int.MaxValue;
 
            // Find the minimum and second minimum cost of
            // painting the previous house with different
            // colors
            for (int j = 0; j < k; j++) {
                if (dp[j] < min1) {
                    min2 = min1;
                    min1 = dp[j];
                }
                else if (dp[j] < min2) {
                    min2 = dp[j];
                }
            }
 
            // Calculate the minimum cost of painting the
            // current house with each color
            for (int j = 0; j < k; j++) {
                if (dp[j] == min1) {
                    dp[j] = min2 + costs[i][j];
                }
                else {
                    dp[j] = min1 + costs[i][j];
                }
            }
        }
 
        // Return the minimum cost of painting the last
        // house
        return dp.Min();
    }
 
    // Main function
    public static void Main()
    {
        // Example input
        List<List<int> > costs = new List<List<int> >{
            new List<int>{ 1, 5, 7 },
            new List<int>{ 5, 8, 4 },
            new List<int>{ 3, 2, 9 },
            new List<int>{ 1, 2, 4 }
        };
 
        // Call the minCost function to get the result
        int ans = minCost(costs);
 
        // Output the result
        Console.WriteLine(ans);
    }
}


Output

8

Time Complexity: O(N*K)
Auxiliary Space: O(K)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments