Given a number N, the task is to find Nth Megagon number.
A Megagon number is a class of figurate numbers. It has a 1000000-sided polygon called Megagon. The N-th Megagon number count’s the 1000000 number of dots and all other dots are surrounding with a common sharing corner and make a pattern. The first few Megagonol numbers are 1, 1000000, 2999997, 5999992, 9999985, 14999976, …
Examples:
Input: N = 2
Output: 1000000
Explanation:
The second Megagonol number is 1000000.
Input: N = 3
Output: 2999997
Approach: The N-th Megagon number is given by the formula:
- Nth term of s sided polygon =
- Therefore Nth term of 1000000 sided polygon is
Below is the implementation of the above approach:
C++
// C++ implementation for the // above approach #include <bits/stdc++.h> using namespace std; // Function to find the // nth Megagon Number int MegagonNum( int n) { return (999998 * n * n - 999996 * n) / 2; } // Driver Code int main() { int n = 3; cout << MegagonNum(n); return 0; } |
Java
// Java program for the above approach class GFG{ // Function to find the // nth Megagon Number static int MegagonNum( int n) { return ( 999998 * n * n - 999996 * n) / 2 ; } // Driver code public static void main(String[] args) { int n = 3 ; System.out.print(MegagonNum(n)); } } // This code is contributed by shubham |
Python3
# Python3 implementation for the # above approach # Function to find the # nth Megagon Number def MegagonNum(n): return ( 999998 * n * n - 999996 * n) / / 2 ; # Driver Code n = 3 ; print (MegagonNum(n)); # This code is contributed by Code_Mech |
C#
// C# program for the above approach using System; class GFG{ // Function to find the // nth Megagon Number static int MegagonNum( int n) { return (999998 * n * n - 999996 * n) / 2; } // Driver code public static void Main(String[] args) { int n = 3; Console.Write(MegagonNum(n)); } } // This code is contributed by sapnasingh4991 |
Javascript
<script> // Javascript implementation for the // above approach // Function to find the // nth Megagon Number function MegagonNum(n) { return (999998 * n * n - 999996 * n) / 2; } // Driver Code var n = 3; document.write(MegagonNum(n)); </script> |
2999997
Reference: https://en.wikipedia.org/wiki/Megagon