Given an array arr[] of size N representing integers required to be read as a data stream, the task is to calculate and print the median after reading every integer.
Examples:
Input: arr[] = { 5, 10, 15 } Output: 5 7.5 10 Explanation: After reading arr[0] from the data stream, the median is 5. After reading arr[1] from the data stream, the median is 7.5. After reading arr[2] from the data stream, the median is 10.
Input: arr[] = { 1, 2, 3, 4 } Output: 1 1.5 2 2.5
Approach: The problem can be solved using Ordered Set. Follow the steps below to solve the problem:
- Initialize a multi Ordered Set say, mst to store the array elements in a sorted order.
- Traverse the array using variable i. For every ith element insert arr[i] into mst and check if the variable i is even or not. If found to be true then print the median using (*mst.find_by_order(i / 2)).
- Otherwise, print the median by taking the average of (*mst.find_by_order(i / 2)) and (*mst.find_by_order((i + 1) / 2)).
Below is the implementation of the above approach:
C++
// C++ program to implement // the above approach #include <iostream> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace __gnu_pbds; using namespace std; typedef tree< int , null_type, less_equal< int >, rb_tree_tag, tree_order_statistics_node_update> idxmst; // Function to find the median // of running integers void findMedian( int arr[], int N) { // Initialise a multi ordered set // to store the array elements // in sorted order idxmst mst; // Traverse the array for ( int i = 0; i < N; i++) { // Insert arr[i] into mst mst.insert(arr[i]); // If i is an odd number if (i % 2 != 0) { // Stores the first middle // element of mst double res = *mst.find_by_order(i / 2); // Stores the second middle // element of mst double res1 = *mst.find_by_order( (i + 1) / 2); cout<< (res + res1) / 2.0<< " " ; } else { // Stores middle element of mst double res = *mst.find_by_order(i / 2); // Print median cout << res << " " ; } } } // Driver Code int main() { // Given stream of integers int arr[] = { 1, 2, 3, 3, 4 }; int N = sizeof (arr) / sizeof (arr[0]); // Function call findMedian(arr, N); } |
Python3
# Python program to implement the approach for finding the median of running integers # Import the necessary module for Ordered Dict from collections import OrderedDict def find_median(arr): # Initialize an ordered dictionary to store the elements in sorted order ordered_dict = OrderedDict() # Traverse the array for i in range ( len (arr)): # Insert arr[i] into ordered_dict ordered_dict[arr[i]] = ordered_dict.get(arr[i], 0 ) + 1 # If i is an odd number if i % 2 ! = 0 : # Find the middle elements and store them in a list mid = list (ordered_dict.keys())[i / / 2 :i / / 2 + 2 ] # Calculate the median by taking the average of the middle elements median = (mid[ 0 ] + mid[ 1 ]) / 2 # Print median print ( "%.1f" % median, end = " " ) else : # Find the middle element mid = list (ordered_dict.keys())[i / / 2 ] # Print median print (mid, end = " " ) # Given stream of integers arr = [ 1 , 2 , 3 , 3 , 4 ] # Function call find_median(arr) # This code is contributed by Shivam Tiwari |
Javascript
// JavaScript program to implement the approach for finding the median of running integers // Initialize an object to store the elements in sorted order let orderedObj = {}; function find_median(arr) { // Traverse the array for (let i = 0; i < arr.length; i++) { // Insert arr[i] into orderedObj orderedObj[arr[i]] = (orderedObj[arr[i]] || 0) + 1; // If i is an odd number if (i % 2 !== 0) { // Find the middle elements and store them in a list let mid = Object.keys(orderedObj).slice(i / 2, i / 2 + 2); // Calculate the median by taking the average of the middle elements let median = (parseInt(mid[0]) + parseInt(mid[1])) / 2; // Print median process.stdout.write(median.toFixed(1) + " " ); } else { // Find the middle element let mid = Object.keys(orderedObj)[i / 2]; // Print median process.stdout.write(mid + " " ); } } } // Given stream of integers let arr = [1, 2, 3, 3, 4]; // Function call find_median(arr); // This code is contributed by sdeadityasharma |
Java
import java.util.*; public class GFG { // Function to find the median // of running integers public static void findMedian( int [] arr) { // Initialize an ordered dictionary to store the elements in sorted order Map<Integer, Integer> ordered_dict = new TreeMap<>(); // Traverse the array for ( int i = 0 ; i < arr.length; i++) { // Insert arr[i] into ordered_dict ordered_dict.put(arr[i], ordered_dict.getOrDefault(arr[i], 0 ) + 1 ); // If i is an odd number if (i % 2 != 0 ) { // Find the middle elements and store them in a list List<Integer> mid = new ArrayList<>(ordered_dict.keySet()).subList(i / 2 , i / 2 + 2 ); // Calculate the median by taking the average of the middle elements double median = (mid.get( 0 ) + mid.get( 1 )) / 2.0 ; // Print median System.out.print(String.format( "%.1f" , median) + " " ); } else { // Find the middle element int mid = new ArrayList<>(ordered_dict.keySet()).get(i / 2 ); // Print median System.out.print(mid + " " ); } } } // Driver Code public static void main(String[] args) { // Given stream of integers int [] arr = { 1 , 2 , 3 , 3 , 4 }; // Function call findMedian(arr); } } // This code is contributed By Shivam Tiwari |
C#
//C# program to implement the approach for finding the median of running integers using System; using System.Collections.Generic; using System.Linq; class Program { static void Main( string [] args) { // Given stream of integers int [] arr = { 1, 2, 3, 3, 4 }; // Function call find_median(arr); } // Function to find the median of running integers static void find_median( int [] arr) { // Initialize an ordered dictionary to store the elements in sorted order Dictionary< int , int > ordered_dict = new Dictionary< int , int >(); // Traverse the array for ( int i = 0; i < arr.Length; i++) { // Insert arr[i] into ordered_dict if (ordered_dict.ContainsKey(arr[i])) { ordered_dict[arr[i]]++; } else { ordered_dict[arr[i]] = 1; } // If i is an odd number if (i % 2 != 0) { // Find the middle elements and store them in a list var mid = ordered_dict.Keys.ToList().GetRange(i / 2, 2); // Calculate the median by taking the average of the middle elements var median = (mid[0] + mid[1]) / 2.0; // Print median Console.Write( "{0:F1} " , median); } else { // Find the middle element var mid = ordered_dict.Keys.ToList().GetRange(i / 2, 1); // Print median Console.Write( "{0} " , mid[0]); } } } } // This code is contributed by shivamsharma215 |
1 1.5 2 2.5 3
Time Complexity: O(N * log(N))
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!