Prerequisites: Python OpenCV
Suppose we have two data images and a test image. Let’s find out which data image is more similar to the test image using python and OpenCV library in Python.
Let’s first load the image and find out the histogram of images.
Importing library
import cv2
Importing image data
image = cv2.imread('test.jpg')
Converting to gray image
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
Finding Histogram
histogram = cv2.calcHist([gray_image], [0], None, [256], [0, 256])
Example:
Images used:
data1.jpg
data2.jpg
test.jpg
Python3
import cv2 # test image image = cv2.imread( 'cat.jpg' ) gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) histogram = cv2.calcHist([gray_image], [ 0 ], None , [ 256 ], [ 0 , 256 ]) # data1 image image = cv2.imread( 'cat.jpeg' ) gray_image1 = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) histogram1 = cv2.calcHist([gray_image1], [ 0 ], None , [ 256 ], [ 0 , 256 ]) # data2 image image = cv2.imread( 'food.jpeg' ) gray_image2 = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) histogram2 = cv2.calcHist([gray_image2], [ 0 ], None , [ 256 ], [ 0 , 256 ]) c1, c2 = 0 , 0 # Euclidean Distance between data1 and test i = 0 while i< len (histogram) and i< len (histogram1): c1 + = (histogram[i] - histogram1[i]) * * 2 i + = 1 c1 = c1 * * ( 1 / 2 ) # Euclidean Distance between data2 and test i = 0 while i< len (histogram) and i< len (histogram2): c2 + = (histogram[i] - histogram2[i]) * * 2 i + = 1 c2 = c2 * * ( 1 / 2 ) if (c1<c2): print ( "data1.jpg is more similar to test.jpg as compare to data2.jpg" ) else : print ( "data2.jpg is more similar to test.jpg as compare to data1.jpg" ) |
Output :
data1.jpg is more similar to test.jpg as compare to data2.jpg