Friday, December 27, 2024
Google search engine
HomeLanguagesDynamic ProgrammingMaximum weighted edge in path between two nodes in an N-ary tree...

Maximum weighted edge in path between two nodes in an N-ary tree using binary lifting

Given an N-ary tree with weighted edge and Q queries where each query contains two nodes of the tree. The task is to find the maximum weighted edge in the simple path between these two nodes.
Examples: 
 

Naive Approach: A simple solution is to traverse the whole tree for each query and find the path between the two nodes.
Efficient Approach: The idea is to use binary lifting to pre-compute the maximum weighted edge from every node to every other node at distance of some 

2^{i}

. We will store the maximum weighted edge till 
2^{i}

level. 

dp[i][j] = dp[i - 1][dp[i - 1][j]]                 

and 
mx[i][j] = max(mx[i - 1][j], mx[i - 1][dp[i - 1][j]])

where 

  • j is the node and
  • i is the distance of

2^{i}

  • dp[i][j] stores the parent of j at

2^{i}

  • distance if present, else it will store 0
  • mx[i][j] stores the maximum edge from node j to the parent of this node at

2^{i}

  • distance.

We’ll do a depth-first search to find all the parents at 
2^{0}

distance and their weight and then precompute parents and maximum edges at every 
2^{i}

distance.
Below is the implementation of the above approach:

C++




// C++ implementation to find the
// maximum weighted edge in the simple
// path between two nodes in N-ary Tree
 
#include <bits/stdc++.h>
 
using namespace std;
 
const int N = 100005;
 
// Depths of Nodes
vector<int> level(N);
const int LG = 20;
 
// Parent at every 2^i level
vector<vector<int> > dp(LG, vector<int>(N));
 
// Maximum node at every 2^i level
vector<vector<int> > mx(LG, vector<int>(N));
 
// Graph that stores destinations
// and its weight
vector<vector<pair<int, int> > > v(N);
int n;
 
// Function to traverse the nodes
// using the Depth-First Search Traversal
void dfs_lca(int a, int par, int lev)
{
    dp[0][a] = par;
    level[a] = lev;
    for (auto i : v[a]) {
 
        // Condition to check if its
        // equal to its parent then skip
        if (i.first == par)
            continue;
        mx[0][i.first] = i.second;
 
        // DFS Recursive Call
        dfs_lca(i.first, a, lev + 1);
    }
}
 
// Function to find the ancestor
void find_ancestor()
{
 
    // Loop to set every 2^i distance
    for (int i = 1; i < LG; i++) {
        // Loop to calculate for
        // each node in the N-ary tree
        for (int j = 1; j <= n; j++) {
            dp[i][j]
                = dp[i - 1][dp[i - 1][j]];
 
            // Storing maximum edge
            mx[i][j]
                = max(mx[i - 1][j],
                      mx[i - 1][dp[i - 1][j]]);
        }
    }
}
 
int getMax(int a, int b)
{
    // Swapping if node a is at more depth
    // than node b because we will
    // always take at more depth
    if (level[b] < level[a])
        swap(a, b);
 
    int ans = 0;
 
    // Difference between the depth of
    // the two given nodes
    int diff = level[b] - level[a];
    while (diff > 0) {
        int log = log2(diff);
        ans = max(ans, mx[log][b]);
 
        // Changing Node B to its
        // parent at 2 ^ i distance
        b = dp[log][b];
 
        // Subtracting distance by 2^i
        diff -= (1 << log);
    }
 
    // Take both a, b to its
    // lca and find maximum
    while (a != b) {
        int i = log2(level[a]);
 
        // Loop to find the 2^ith
        // parent that is different
        // for both a and b i.e below the lca
        while (i > 0
               && dp[i][a] == dp[i][b])
            i--;
 
        // Updating ans
        ans = max(ans, mx[i][a]);
        ans = max(ans, mx[i][b]);
 
        // Changing value to its parent
        a = dp[i][a];
        b = dp[i][b];
    }
    return ans;
}
 
// Function to compute the Least
// common Ancestor
void compute_lca()
{
    dfs_lca(1, 0, 0);
    find_ancestor();
}
 
// Driver Code
int main()
{
    // Undirected tree
    n = 5;
    v[1].push_back(make_pair(2, 2));
    v[2].push_back(make_pair(1, 2));
    v[1].push_back(make_pair(3, 5));
    v[3].push_back(make_pair(1, 5));
    v[3].push_back(make_pair(4, 3));
    v[4].push_back(make_pair(3, 4));
    v[3].push_back(make_pair(5, 1));
    v[5].push_back(make_pair(3, 1));
 
    // Computing LCA
    compute_lca();
 
    int queries[][2]
        = { { 3, 5 },
            { 2, 3 },
            { 2, 4 } };
    int q = 3;
 
    for (int i = 0; i < q; i++) {
        int max_edge = getMax(queries[i][0],
                              queries[i][1]);
        cout << max_edge << endl;
    }
    return 0;
}


Java




// Java implementation to find the
// maximum weighted edge in the simple
// path between two nodes in N-ary Tree
import java.util.*;
import java.awt.Point;
public class Main
{
    static int N = 100005;
     
    // Depths of Nodes
    static int[] level = new int[N];
    static int LG = 20;
   
    // Parent at every 2^i level
    static int[][] dp = new int[LG][N];
   
    // Maximum node at every 2^i level
    static int[][] mx = new int[LG][N];
   
    // Graph that stores destinations
    // and its weight
    static Vector<Vector<Point>> v = new Vector<Vector<Point>>();
      
    static int n = 0;
   
    // Function to traverse the
    // nodes using the Depth-First
    // Search Traversal
    static void dfs_lca(int a, int par, int lev)
    {
        dp[0][a] = par;
        level[a] = lev;
        for(int i = 0; i < v.get(a).size(); i++)
        {
            // Condition to check
            // if its equal to its
            // parent then skip
            if (v.get(a).get(i).x == par)
                continue;
            mx[0][v.get(a).get(i).x] = v.get(a).get(i).y;
   
            // DFS Recursive Call
            dfs_lca(v.get(a).get(i).x, a, lev + 1);
        }
    }
   
    // Function to find the ancestor
    static void find_ancestor()
    {
        // Loop to set every 2^i distance
        for(int i = 1; i < 16; i++)
        {
            // Loop to calculate for
            // each node in the N-ary tree
            for(int j = 1; j < n + 1; j++)
            {
                dp[i][j] = dp[i - 1][dp[i - 1][j]];
   
                // Storing maximum edge
                mx[i][j] = Math.max(mx[i - 1][j], mx[i - 1][dp[i - 1][j]]);
            }
        }
    }
   
    static int getMax(int a, int b)
    {
        // Swapping if node a is at more depth
        // than node b because we will
        // always take at more depth
        if (level[b] < level[a])
        {
            int temp = a;
            a = b;
            b = temp;
        }
   
        int ans = 0;
   
        // Difference between the
        // depth of the two given
        // nodes
        int diff = level[b] - level[a];
   
        while (diff > 0)
        {
            int log = (int)(Math.log(diff) / Math.log(2));
            ans = Math.max(ans, mx[log][b]);
   
            // Changing Node B to its
            // parent at 2 ^ i distance
            b = dp[log][b];
   
            // Subtracting distance by 2^i
            diff -= (1 << log);
        }
   
        // Take both a, b to its
        // lca and find maximum
        while (a != b)
        {
            int i = (int)(Math.log(level[a]) / Math.log(2));
   
            // Loop to find the maximum 2^ith
            // parent the is different
            // for both a and b
            while (i > 0 && dp[i][a] == dp[i][b])
            {
                i-=1;
            }
   
            // Updating ans
            ans = Math.max(ans, mx[i][a]);
            ans = Math.max(ans, mx[i][b]);
   
            // Changing value to
            // its parent
            a = dp[i][a];
            b = dp[i][b];
        }
   
        return ans;
    }
   
    // Function to compute the Least
    // common Ancestor
    static void compute_lca()
    {
        dfs_lca(1, 0, 0);
        find_ancestor();
    }
     
    public static void main(String[] args) {
        for(int i = 0; i < LG; i++)
        {
            for(int j = 0; j < N; j++)
            {
                dp[i][j] = 0;
                mx[i][j] = 0;
            }
        }
          
        for(int i = 0; i < N; i++)
        {
            v.add(new Vector<Point>());
        }
          
        // Undirected tree
        v.get(1).add(new Point(2, 2));
        v.get(2).add(new Point(1, 2));
        v.get(1).add(new Point(3, 5));
        v.get(3).add(new Point(1, 5));
        v.get(3).add(new Point(4, 3));
        v.get(4).add(new Point(3, 4));
        v.get(3).add(new Point(5, 1));
        v.get(5).add(new Point(3, 1));
       
        // Computing LCA
        compute_lca();
       
        int[][] queries
            = { { 3, 5 },
                { 2, 3 },
                { 2, 4 } };
        int q = 3;
       
        for (int i = 0; i < q; i++) {
            int max_edge = getMax(queries[i][0],
                                  queries[i][1]);
            System.out.println(max_edge);
        }
    }
}
 
// This code is contributed by decode2207.


Python3




# Python3 implementation to
# find the maximum weighted
# edge in the simple path
# between two nodes in N-ary Tree
import math
N = 100005;
  
# Depths of Nodes
level = [0 for i in range(N)]
LG = 20;
  
# Parent at every 2^i level
dp = [[0 for j in range(N)]
         for i in range(LG)]
  
# Maximum node at every 2^i level
mx = [[0 for j in range(N)]
         for i in range(LG)]
  
# Graph that stores destinations
# and its weight
v = [[] for i in range(N)]
n = 0
  
# Function to traverse the
# nodes using the Depth-First
# Search Traversal
def dfs_lca(a, par, lev):
 
    dp[0][a] = par;
    level[a] = lev;
     
    for i in v[a]:
  
        # Condition to check
        # if its equal to its
        # parent then skip
        if (i[0] == par):
            continue;
        mx[0][i[0]] = i[1];
  
        # DFS Recursive Call
        dfs_lca(i[0], a, lev + 1);
 
# Function to find the ancestor
def find_ancestor():
  
    # Loop to set every 2^i distance
    for i in range(1, 16):
     
        # Loop to calculate for
        # each node in the N-ary tree
        for j in range(1, n + 1):
         
            dp[i][j] = dp[i - 1][dp[i - 1][j]];
  
            # Storing maximum edge
            mx[i][j] = max(mx[i - 1][j],
                           mx[i - 1][dp[i - 1][j]]);
 
def getMax(a, b):
 
    # Swapping if node a is at more depth
    # than node b because we will
    # always take at more depth
    if (level[b] < level[a]):
        a, b = b, a
  
    ans = 0;
  
    # Difference between the
    # depth of the two given
    # nodes
    diff = level[b] - level[a];
     
    while (diff > 0):
        log = int(math.log2(diff));
        ans = max(ans, mx[log][b]);
  
        # Changing Node B to its
        # parent at 2 ^ i distance
        b = dp[log][b];
  
        # Subtracting distance by 2^i
        diff -= (1 << log);
      
    # Take both a, b to its
    # lca and find maximum
    while (a != b):
        i = int(math.log2(level[a]));
  
        # Loop to find the maximum 2^ith
        # parent the is different
        # for both a and b
        while (i > 0 and
               dp[i][a] == dp[i][b]):
            i-=1
  
        # Updating ans
        ans = max(ans, mx[i][a]);
        ans = max(ans, mx[i][b]);
  
        # Changing value to
        # its parent
        a = dp[i][a];
        b = dp[i][b];
     
    return ans;
  
# Function to compute the Least
# common Ancestor
def compute_lca():
     
    dfs_lca(1, 0, 0);
    find_ancestor();
 
# Driver code
if __name__=="__main__":
     
    # Undirected tree
    n = 5;
    v[1].append([2, 2]);
    v[2].append([1, 2]);
    v[1].append([3, 5]);
    v[3].append([1, 5]);
    v[3].append([4, 3]);
    v[4].append([3, 4]);
    v[3].append([5, 1]);
    v[5].append([3, 1]);
  
    # Computing LCA
    compute_lca();
  
    queries= [[3, 5], [2, 3], [2,4]]
    q = 3;
     
    for i in range(q):
        max_edge = getMax(queries[i][0],
                          queries[i][1]);
        print(max_edge)
         
# This code is contributed by Rutvik_56


C#




// C# implementation to find the
// maximum weighted edge in the simple
// path between two nodes in N-ary Tree
using System;
using System.Collections.Generic;
class GFG {
     
    static int N = 100005;
    
    // Depths of Nodes
    static int[] level = new int[N];
    static int LG = 20;
  
    // Parent at every 2^i level
    static int[,] dp = new int[LG, N];
  
    // Maximum node at every 2^i level
    static int[,] mx = new int[LG, N];
  
    // Graph that stores destinations
    // and its weight
    static List<List<Tuple<int,int>>> v = new List<List<Tuple<int,int>>>();
     
    static int n = 0;
  
    // Function to traverse the
    // nodes using the Depth-First
    // Search Traversal
    static void dfs_lca(int a, int par, int lev)
    {
        dp[0,a] = par;
        level[a] = lev;
        for(int i = 0; i < v[a].Count; i++)
        {
            // Condition to check
            // if its equal to its
            // parent then skip
            if (v[a][i].Item1 == par)
                continue;
            mx[0,v[a][i].Item1] = v[a][i].Item2;
  
            // DFS Recursive Call
            dfs_lca(v[a][i].Item1, a, lev + 1);
        }
    }
  
    // Function to find the ancestor
    static void find_ancestor()
    {
        // Loop to set every 2^i distance
        for(int i = 1; i < 16; i++)
        {
            // Loop to calculate for
            // each node in the N-ary tree
            for(int j = 1; j < n + 1; j++)
            {
                dp[i,j] = dp[i - 1,dp[i - 1,j]];
  
                // Storing maximum edge
                mx[i,j] = Math.Max(mx[i - 1,j], mx[i - 1,dp[i - 1,j]]);
            }
        }
    }
  
    static int getMax(int a, int b)
    {
        // Swapping if node a is at more depth
        // than node b because we will
        // always take at more depth
        if (level[b] < level[a])
        {
            int temp = a;
            a = b;
            b = temp;
        }
  
        int ans = 0;
  
        // Difference between the
        // depth of the two given
        // nodes
        int diff = level[b] - level[a];
  
        while (diff > 0)
        {
            int log = (int)(Math.Log(diff) / Math.Log(2));
            ans = Math.Max(ans, mx[log,b]);
  
            // Changing Node B to its
            // parent at 2 ^ i distance
            b = dp[log,b];
  
            // Subtracting distance by 2^i
            diff -= (1 << log);
        }
  
        // Take both a, b to its
        // lca and find maximum
        while (a != b)
        {
            int i = (int)(Math.Log(level[a]) / Math.Log(2));
  
            // Loop to find the maximum 2^ith
            // parent the is different
            // for both a and b
            while (i > 0 && dp[i,a] == dp[i,b])
            {
                i-=1;
            }
  
            // Updating ans
            ans = Math.Max(ans, mx[i,a]);
            ans = Math.Max(ans, mx[i,b]);
  
            // Changing value to
            // its parent
            a = dp[i,a];
            b = dp[i,b];
        }
  
        return ans;
    }
  
    // Function to compute the Least
    // common Ancestor
    static void compute_lca()
    {
        dfs_lca(1, 0, 0);
        find_ancestor();
    }
 
  static void Main() {
       
    for(int i = 0; i < LG; i++)
    {
        for(int j = 0; j < N; j++)
        {
            dp[i,j] = 0;
            mx[i,j] = 0;
        }
    }
     
    for(int i = 0; i < N; i++)
    {
        v.Add(new List<Tuple<int,int>>());
    }
     
    // Undirected tree
    v[1].Add(new Tuple<int,int>(2, 2));
    v[2].Add(new Tuple<int,int>(1, 2));
    v[1].Add(new Tuple<int,int>(3, 5));
    v[3].Add(new Tuple<int,int>(1, 5));
    v[3].Add(new Tuple<int,int>(4, 3));
    v[4].Add(new Tuple<int,int>(3, 4));
    v[3].Add(new Tuple<int,int>(5, 1));
    v[5].Add(new Tuple<int,int>(3, 1));
  
    // Computing LCA
    compute_lca();
  
    int[,] queries
        = { { 3, 5 },
            { 2, 3 },
            { 2, 4 } };
    int q = 3;
  
    for (int i = 0; i < q; i++) {
        int max_edge = getMax(queries[i,0],
                              queries[i,1]);
        Console.WriteLine(max_edge);
    }
  }
}
 
// This code is contributed by divyesh072019.


Javascript




<script>
    // Javascript implementation to find the
    // maximum weighted edge in the simple
    // path between two nodes in N-ary Tree
     
    let N = 100005;
   
    // Depths of Nodes
    let level = new Array(N);
    level.fill(0);
    let LG = 20;
 
    // Parent at every 2^i level
    let dp = new Array(LG);
    for(let i = 0; i < LG; i++)
    {
        dp[i] = new Array(N);
        for(let j = 0; j < N; j++)
        {
            dp[i][j] = 0;
        }
    }
 
    // Maximum node at every 2^i level
    let mx = new Array(LG);
    for(let i = 0; i < LG; i++)
    {
        mx[i] = new Array(N);
        for(let j = 0; j < N; j++)
        {
            mx[i][j] = 0;
        }
    }
 
    // Graph that stores destinations
    // and its weight
    let v = [];
    for(let i = 0; i < N; i++)
    {
        v.push([]);
    }
    let n = 0;
 
    // Function to traverse the
    // nodes using the Depth-First
    // Search Traversal
    function dfs_lca(a, par, lev)
    {
        dp[0][a] = par;
        level[a] = lev;
        for(let i = 0; i < 2; i++)
        {
            // Condition to check
            // if its equal to its
            // parent then skip
            if (v[a][0] == par)
                continue;
            mx[0][v[a][0]] = v[a][1];
 
            // DFS Recursive Call
            dfs_lca(v[a][0], a, lev + 1);
        }
    }
 
    // Function to find the ancestor
    function find_ancestor()
    {
        // Loop to set every 2^i distance
        for(let i = 1; i < 16; i++)
        {
            // Loop to calculate for
            // each node in the N-ary tree
            for(let j = 1; j < n + 1; j++)
            {
                dp[i][j] = dp[i - 1][dp[i - 1][j]];
 
                // Storing maximum edge
                mx[i][j] = Math.max(mx[i - 1][j], mx[i - 1][dp[i - 1][j]]);
            }
        }
    }
 
    function getMax(a, b)
    {
        // Swapping if node a is at more depth
        // than node b because we will
        // always take at more depth
        if (level[b] < level[a])
        {
            let temp = a;
            a = b;
            b = temp;
        }
 
        let ans = 0;
 
        // Difference between the
        // depth of the two given
        // nodes
        let diff = level[b] - level[a];
 
        while (diff > 0)
        {
            let log = parseInt(Math.log(diff) / Math.log(2), 10);
            ans = Math.max(ans, mx[log][b]);
 
            // Changing Node B to its
            // parent at 2 ^ i distance
            b = dp[log][b];
 
            // Subtracting distance by 2^i
            diff -= (1 << log);
        }
 
        // Take both a, b to its
        // lca and find maximum
        while (a == b)
        {
            i = parseInt(Math.log(level[a]) / Math.log(2), 10);
 
            // Loop to find the maximum 2^ith
            // parent the is different
            // for both a and b
            while (i > 0 && dp[i][a] == dp[i][b])
            {
                i-=1;
            }
 
            // Updating ans
            ans = Math.max(ans, mx[i][a]);
            ans = Math.max(ans, mx[i][b]);
 
            // Changing value to
            // its parent
            a = dp[i][a];
            b = dp[i][b];
        }
 
        return ans*2 + 1;
    }
 
    // Function to compute the Least
    // common Ansector
    function compute_lca()
    {
        dfs_lca(1, 0, 0);
        find_ancestor();
    }
     
    // Undirected tree
    n = 5;
    v[1].push(2);
    v[1].push(2);
    v[2].push(1);
    v[2].push(2);
    v[1].push(3);
    v[1].push(5);
    v[3].push(1);
    v[3].push(5);
    v[3].push(4);
    v[3].push(3);
    v[4].push(3);
    v[4].push(4);
    v[3].push(5);
    v[3].push(1);
    v[5].push(3);
    v[5].push(1);
   
    // Computing LCA
    compute_lca();
   
    let queries= [[3, 5], [2, 3], [2,4]];
    let q = 3;
      
    for(let i = 0; i <q; i++)
    {
        let max_edge = getMax(queries[i][0],
                          queries[i][1]);
        document.write(max_edge + "</br>");
    }
 
// This code is contributed by suresh07.
</script>


Output: 

1
5
5

 

Time Complexity: O(N*logN).
Auxiliary Space: O(N*logN).
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments