Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIMaximum weight transformation of a given string

Maximum weight transformation of a given string

Given a string consisting of only A’s and B’s. We can transform the given string to another string by toggling any character. Thus many transformations of the given string are possible. The task is to find Weight of the maximum weight transformation.

 Weight of a string is calculated using below formula. 

Weight of string = Weight of total pairs + 
                   weight of single characters - 
                   Total number of toggles.

Two consecutive characters are considered as pair only if they 
are different. 
Weight of a single pair (both character are different) = 4
Weight of a single character = 1 

Examples : 

Input: str = "AA"
Output: 3
Transformations of given string are "AA", "AB", "BA" and "BB". 
Maximum weight transformation is "AB" or "BA".  And weight
is "One Pair - One Toggle" = 4-1 = 3.

Input: str = "ABB"
Output: 5
Transformations are "ABB", "ABA", "AAB", "AAA", "BBB", 
"BBA", "BAB" and "BAA"
Maximum weight is of original string 4+1 (One Pair + 1
character)

maxWeight(str[0..n-1]) = 1

Else If str[0] != str[1]
// Max of two cases: First character considered separately
// First pair considered separately
maxWeight(str[0..n-1]) = Max (1 + maxWeight(str[1..n-1]),
4 + getMaxRec(str[2..n-1])
Else
// Max of two cases: First character considered separately
// First pair considered separately
// Since first two characters are same and a toggle is
// required to form a pair, 3 is added for pair instead
// of 4
maxWeight(str[0..n-1]) = Max (1 + maxWeight(str[1..n-1]),
3 + getMaxRec(str[2..n-1])

If we draw the complete recursion tree, we can observer that many subproblems are solved again and again. Since same subproblems are called again, this problem has Overlapping Subproblems property. So min square sum problem has both properties (see this and this) of a dynamic programming problem. Like other typical Dynamic Programming(DP) problems.

Below is a memoization based solution. A lookup table is used to see if a problem is already computed.  

C++




// C++ program to find maximum weight
// transformation of a given string
#include<bits/stdc++.h>
using namespace std;
 
// Returns weight of the maximum
// weight transformation
int getMaxRec(string &str, int i, int n,
                           int lookup[])
{
    // Base case
    if (i >= n) return 0;
 
    //If this subproblem is already solved
    if (lookup[i] != -1) return lookup[i];
 
    // Don't make pair, so
    // weight gained is 1
    int ans = 1 + getMaxRec(str, i + 1, n,
                                  lookup);
 
    // If we can make pair
    if (i + 1 < n)
    {
    // If elements are dissimilar,
    // weight gained is 4
    if (str[i] != str[i+1])
        ans = max(4 + getMaxRec(str, i + 2,
                                n, lookup), ans);
 
    // if elements are similar so for
    // making a pair we toggle any of them.
    // Since toggle cost is 1 so
    // overall weight gain becomes 3
    else ans = max(3 + getMaxRec(str, i + 2,
                                 n, lookup), ans);
    }
 
    // save and return maximum
    // of above cases
    return lookup[i] = ans;
}
 
// Initializes lookup table
// and calls getMaxRec()
int getMaxWeight(string str)
{
    int n = str.length();
 
    // Create and initialize lookup table
    int lookup[n];
    memset(lookup, -1, sizeof lookup);
 
    // Call recursive function
    return getMaxRec(str, 0, str.length(),
                                 lookup);
}
 
// Driver Code
int main()
{
    string str = "AAAAABB";
    cout << "Maximum weight of a transformation of "
          << str << " is " << getMaxWeight(str);
    return 0;
}


Java




// Java program to find maximum
// weight transformation of a
// given string
class GFG {
     
    // Returns weight of the maximum
    // weight transformation
    static int getMaxRec(String str, int i,
            int n, int[] lookup)
    {
        // Base case
        if (i >= n)
        {
            return 0;
        }
 
        // If this subproblem is already solved
        if (lookup[i] != -1)
        {
            return lookup[i];
        }
 
        // Don't make pair, so
        // weight gained is 1
        int ans = 1 + getMaxRec(str, i + 1,
                            n, lookup);
 
        // If we can make pair
        if (i + 1 < n)
        {
             
            // If elements are dissimilar,
            // weight gained is 4
            if (str.charAt(i) != str.charAt(i + 1))
            {
                ans = Math.max(4 + getMaxRec(str, i + 2,
                                n, lookup), ans);
            }
             
            // if elements are similar so for
            // making a pair we toggle any of
            // them. Since toggle cost is
            // 1 so overall weight gain becomes 3
            else
            {
                ans = Math.max(3 + getMaxRec(str, i + 2,
                                n, lookup), ans);
            }
        }
 
        // save and return maximum
        // of above cases
        return lookup[i] = ans;
    }
 
    // Initializes lookup table
    // and calls getMaxRec()
    static int getMaxWeight(String str)
    {
        int n = str.length();
 
        // Create and initialize lookup table
        int[] lookup = new int[n];
        for (int i = 0; i < n; i++)
        {
            lookup[i] = -1;
        }
 
        // Call recursive function
        return getMaxRec(str, 0, str.length(),
                            lookup);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
 
        String str = "AAAAABB";
        System.out.println("Maximum weight of a"
                        + " transformation of "
                        + str + " is "
                        + getMaxWeight(str));
    }
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program to find maximum weight
# transformation of a given string
 
# Returns weight of the maximum
# weight transformation
def getMaxRec(string, i, n, lookup):
     
    # Base Case
    if i >= n:
        return 0
 
    # If this subproblem is already solved
    if lookup[i] != -1:
        return lookup[i]
 
    # Don't make pair, so
    # weight gained is 1
    ans = 1 + getMaxRec(string, i + 1, n,
                        lookup)
 
    # If we can make pair
    if i + 1 < n:
         
        # If elements are dissimilar
        if string[i] != string[i + 1]:
            ans = max(4 + getMaxRec(string, i + 2,
                                    n, lookup), ans)
        # if elements are similar so for
        # making a pair we toggle any of them.
        # Since toggle cost is 1 so
        # overall weight gain becomes 3
        else:
            ans = max(3 + getMaxRec(string, i + 2,
                                    n, lookup), ans)
    # save and return maximum
    # of above cases
    lookup[i] = ans
    return ans
 
# Initializes lookup table
# and calls getMaxRec()
def getMaxWeight(string):
 
    n = len(string)
 
    # Create and initialize lookup table
    lookup = [-1] * (n)
 
    # Call recursive function
    return getMaxRec(string, 0,
                     len(string), lookup)
 
# Driver Code
if __name__ == "__main__":
    string = "AAAAABB"
    print("Maximum weight of a transformation of",
           string, "is", getMaxWeight(string))
 
# This code is contributed by vibhu4agarwal


C#




// C# program to find maximum
// weight transformation of a
// given string
using System;
 
class GFG
{
// Returns weight of the maximum
// weight transformation
static int getMaxRec(string str, int i,
                     int n, int []lookup)
{
    // Base case
    if (i >= n) return 0;
 
    //If this subproblem is already solved
    if (lookup[i] != -1) return lookup[i];
 
    // Don't make pair, so
    // weight gained is 1
    int ans = 1 + getMaxRec(str, i + 1,
                            n, lookup);
 
    // If we can make pair
    if (i + 1 < n)
    {
    // If elements are dissimilar,
    // weight gained is 4
    if (str[i] != str[i + 1])
        ans = Math.Max(4 + getMaxRec(str, i + 2,
                                     n, lookup), ans);
 
    // if elements are similar so for
    // making a pair we toggle any of
    // them. Since toggle cost is
    // 1 so overall weight gain becomes 3
    else ans = Math.Max(3 + getMaxRec(str, i + 2,
                                      n, lookup), ans);
    }
 
    // save and return maximum
    // of above cases
    return lookup[i] = ans;
}
 
// Initializes lookup table
// and calls getMaxRec()
static int getMaxWeight(string str)
{
    int n = str.Length;
 
    // Create and initialize lookup table
    int[] lookup = new int[n];
    for(int i = 0 ; i < n ; i++)
    lookup[i] = -1;
 
    // Call recursive function
    return getMaxRec(str, 0, str.Length,
                                 lookup);
}
 
// Driver Code
public static void Main()
{
    string str = "AAAAABB";
    Console.Write("Maximum weight of a" +
                  " transformation of " +
                           str + " is " +
                      getMaxWeight(str));
}
}
 
// This code is contributed by Sumit Sudhakar


Javascript




<script>
    // Javascript program to find maximum
    // weight transformation of a
    // given string
     
    // Returns weight of the maximum
    // weight transformation
    function getMaxRec(str, i, n, lookup)
    {
        // Base case
        if (i >= n)
        {
            return 0;
        }
   
        // If this subproblem is already solved
        if (lookup[i] != -1)
        {
            return lookup[i];
        }
   
        // Don't make pair, so
        // weight gained is 1
        let ans = 1 + getMaxRec(str, i + 1, n, lookup);
   
        // If we can make pair
        if (i + 1 < n)
        {
               
            // If elements are dissimilar,
            // weight gained is 4
            if (str[i] != str[i + 1])
            {
                ans = Math.max(4 + getMaxRec(str, i + 2,
                                n, lookup), ans);
            }
               
            // if elements are similar so for
            // making a pair we toggle any of
            // them. Since toggle cost is
            // 1 so overall weight gain becomes 3
            else
            {
                ans = Math.max(3 + getMaxRec(str, i + 2,
                                n, lookup), ans);
            }
        }
   
        // save and return maximum
        // of above cases
        return lookup[i] = ans;
    }
   
    // Initializes lookup table
    // and calls getMaxRec()
    function getMaxWeight(str)
    {
        let n = str.length;
   
        // Create and initialize lookup table
        let lookup = new Array(n);
        lookup.fill(0);
        for (let i = 0; i < n; i++)
        {
            lookup[i] = -1;
        }
   
        // Call recursive function
        return getMaxRec(str, 0, str.length, lookup);
    }
     
    let str = "AAAAABB";
    document.write("Maximum weight of a"
                       + " transformation of "
                       + str + " is "
                       + getMaxWeight(str));
   
  // This code is contributed by decode2207.
</script>


Output: 

Maximum weight of a transformation of AAAAABB is 11 

Thanks to Gaurav Ahirwar for providing above solution. 
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments