Saturday, January 25, 2025
Google search engine
HomeData Modelling & AIMaximum value of X such that difference between any array element and...

Maximum value of X such that difference between any array element and X does not exceed K

Given an array arr[] consisting of N positive integers and a positive integer K, the task is to find the maximum possible integer X, such that the absolute difference between any array element and X is at most K. If no such value of X exists, then print “-1”.

Examples:

Input: arr[] = {6, 4, 8, 5}, K = 2
Output: 6
Explanation: Considering X to be 6, the absolute difference between every array element and X(= 6) is at most K (= 2), as illustrated below:

  • Absolute difference between arr[0](= 6) and X(= 6) = |6 – 6| = 0.
  • Absolute difference between arr[1](= 4) and X(= 6) = |4 – 6| = 2.
  • Absolute difference between arr[2](= 8) and X(= 6) = |8 – 6| = 2.
  • Absolute difference between arr[3](= 5) and X(= 6) = |5 – 6| = 1.

Input: arr[] = {1, 2, 5}, K = 2
Output: 3

Approach: The given problem can be solved based on the following observations:

  • Considering array elements to be arr[i], the value of |arr[i] – X| must be at most K.
  • If arr[i] > X, then X ? (arr[i] – K). Otherwise, X ? (arr[i] + K).
  • From the above two equations, the maximum value of X must be the sum of minimum value of arr[i] and K.

Follow the steps below to solve the problem:

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find maximum value
// of X such that |A[i] - X| ? K
int maximumNumber(int arr[], int N,
                  int K)
{
    // Stores the smallest array element
    int minimum = *min_element(arr,
                               arr + N);
 
    // Store the possible value of X
    int ans = minimum + K;
 
    // Traverse the array A[]
    for (int i = 0; i < N; i++) {
 
        // If required criteria is not satisfied
        if (abs(arr[i] - ans) > K) {
 
            // Update ans
            ans = -1;
            break;
        }
    }
 
    // Print the result
    cout << ans;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 2, 5 };
    int K = 2;
    int N = sizeof(arr) / sizeof(arr[0]);
    maximumNumber(arr, N, K);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to find maximum value
// of X such that |A[i] - X| ? K
static void maximumNumber(int arr[], int N,
                          int K)
{
     
    // Stores the smallest array element
    int minimum =  Arrays.stream(arr).min().getAsInt();
 
    // Store the possible value of X
    int ans = minimum + K;
 
    // Traverse the array A[]
    for(int i = 0; i < N; i++)
    {
         
        // If required criteria is not satisfied
        if (Math.abs(arr[i] - ans) > K)
        {
             
            // Update ans
            ans = -1;
            break;
        }
    }
 
    // Print the result
    System.out.print(ans);
}
 
// Driver Code
public static void main(String args[])
{
    int arr[] = { 1, 2, 5 };
    int K = 2;
    int N = arr.length;
     
    maximumNumber(arr, N, K);
}
}
 
// This code is contributed by sanjoy_62


Python3




# Python3 program for the above approach
 
# Function to find maximum value
# of X such that |A[i] - X| ? K
def maximumNumber(arr, N, K):
     
    # Stores the smallest array element
    minimum = min(arr)
 
    # Store the possible value of X
    ans = minimum + K
 
    # Traverse the array A[]
    for i in range(N):
         
        # If required criteria is not satisfied
        if (abs(arr[i] - ans) > K):
             
            # Update ans
            ans = -1
            break
 
    # Print the result
    print(ans)
 
# Driver Code
if __name__ == '__main__':
     
    arr =  [1, 2, 5]
    K = 2
    N = len(arr)
     
    maximumNumber(arr, N, K)
 
# This code is contributed by SURENDRA_GANGWAR


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to find maximum value
// of X such that |A[i] - X| ? K
static void maximumNumber(int []arr, int N,
                          int K)
{
     
    // Stores the smallest array element
    int mn = 100000000;
    for(int i = 0; i < N; i++)
    {
        if (arr[i] < mn)
          mn = arr[i];
    }
     
    // Store the possible value of X
    int ans = mn + K;
 
    // Traverse the array A[]
    for(int i = 0; i < N; i++)
    {
 
        // If required criteria is not satisfied
        if (Math.Abs(arr[i] - ans) > K)
        {
 
            // Update ans
            ans = -1;
            break;
        }
    }
 
    // Print the result
    Console.Write(ans);
}
 
// Driver Code
public static void Main()
{
    int []arr = { 1, 2, 5 };
    int K = 2;
    int N = arr.Length;
     
    maximumNumber(arr, N, K);
}
}
 
// This code is contributed by ipg2016107


Javascript




<script>
 
        // Javascript program for
        // the above approach
 
        // Function to find maximum value
        // of X such that |A[i] - X| ? K
        function maximumNumber(arr, N, K)
        {
            // Stores the smallest
            // array element
            let minimum = Math.min(...arr)
 
            // Store the possible value of X
            let ans = minimum + K;
 
            // Traverse the array A[]
            for (let i = 0; i < N; i++) {
 
                // If required criteria is
                // not satisfied
                if (Math.abs(arr[i] - ans) > K)
                {
 
                    // Update ans
                    ans = -1;
                    break;
                }
            }
 
            // Print the result
            document.write(ans)
        }
 
        // Driver Code
        let arr = [1, 2, 5]
        let K = 2
        let N = arr.length
        maximumNumber(arr, N, K);
 
 
        // This code is contributed by Hritik
         
    </script>


Output

3

Time Complexity: O(N)
Auxiliary Space: O(1)

Approach 2: Binary Search:

Another approach to solve this problem is to use binary search. We can find the range of possible values of X using the smallest and largest elements of the array. Then, we can perform a binary search in this range to find the maximum value of X that satisfies the given condition.

Here is the implementation of this approach:

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to find maximum value
// of X such that |A[i] - X| ? K
int maximumNumber(int arr[], int N,
                  int K)
{
    // Stores the smallest and largest array elements
    int minimum = *min_element(arr, arr + N);
    int maximum = *max_element(arr, arr + N);
 
    // Store the range of possible values of X
    int low = minimum + K;
    int high = maximum - K;
 
    // Perform binary search to find
    // maximum value of X that satisfies
    // the given condition
    while (low <= high) {
        int mid = low + (high - low) / 2;
        bool possible = true;
        for (int i = 0; i < N; i++) {
            if (abs(arr[i] - mid) > K) {
                possible = false;
                break;
            }
        }
        if (possible) {
            low = mid + 1;
        } else {
            high = mid - 1;
        }
    }
 
    // Return the maximum value of X
    return high;
}
 
// Driver Code
int main()
{
    int arr[] = {1, 2, 5};
    int K = 2;
    int N = sizeof(arr) / sizeof(arr[0]);
    int ans = maximumNumber(arr, N, K);
    if (ans == -1) {
        cout << "No such X exists";
    } else {
        cout << ans;
    }
    return 0;
}


Java




import java.util.*;
 
public class Main {
 
// Function to find maximum value
// of X such that |A[i] - X| ? K
public static int maximumNumber(int arr[], int N, int K) {
 
    // Stores the smallest and largest array elements
    int minimum = Arrays.stream(arr).min().getAsInt();
    int maximum = Arrays.stream(arr).max().getAsInt();
 
    // Store the range of possible values of X
    int low = minimum + K;
    int high = maximum - K;
 
    // Perform binary search to find
    // maximum value of X that satisfies
    // the given condition
    while (low <= high) {
        int mid = low + (high - low) / 2;
        boolean possible = true;
        for (int i = 0; i < N; i++) {
            if (Math.abs(arr[i] - mid) > K) {
                possible = false;
                break;
            }
        }
        if (possible) {
            low = mid + 1;
        } else {
            high = mid - 1;
        }
    }
 
    // Return the maximum value of X
    return high;
}
 
// Driver Code
public static void main(String[] args) {
    int arr[] = {1, 2, 5};
    int K = 2;
    int N = arr.length;
    int ans = maximumNumber(arr, N, K);
    if (ans == -1) {
        System.out.println("No such X exists");
    } else {
        System.out.println(ans);
    }
}
}


Python3




# Function to find maximum value
# of X such that |A[i] - X| ? K
def maximumNumber(arr, N, K):
    # Stores the smallest and largest array elements
    minimum = min(arr)
    maximum = max(arr)
 
    # Store the range of possible values of X
    low = minimum + K
    high = maximum - K
 
    # Perform binary search to find
    # maximum value of X that satisfies
    # the given condition
    while low <= high:
        mid = low + (high - low) // 2
        possible = True
        for i in range(N):
            if abs(arr[i] - mid) > K:
                possible = False
                break
        if possible:
            low = mid + 1
        else:
            high = mid - 1
 
    # Return the maximum value of X
    return high
 
# Driver Code
arr = [1, 2, 5]
K = 2
N = len(arr)
ans = maximumNumber(arr, N, K)
if ans == -1:
    print("No such X exists")
else:
    print(ans)


C#




using System;
using System.Linq;
 
class MainClass {
    public static int maximumNumber(int[] arr, int N, int K)
    {
        // Stores the smallest and largest array elements
        int minimum = arr.Min();
        int maximum = arr.Max();
 
        // Store the range of possible values of X
        int low = minimum + K;
        int high = maximum - K;
 
        // Perform binary search to find
        // maximum value of X that satisfies
        // the given condition
        while (low <= high) {
            int mid = low + (high - low) / 2;
            bool possible = true;
            for (int i = 0; i < N; i++) {
                if (Math.Abs(arr[i] - mid) > K) {
                    possible = false;
                    break;
                }
            }
            if (possible) {
                low = mid + 1;
            }
            else {
                high = mid - 1;
            }
        }
 
        // Return the maximum value of X
        return high;
    }
 
    public static void Main()
    {
        int[] arr = { 1, 2, 5 };
        int K = 2;
        int N = arr.Length;
        int ans = maximumNumber(arr, N, K);
        if (ans == -1) {
            Console.WriteLine("No such X exists");
        }
        else {
            Console.WriteLine(ans);
        }
    }
}
// This code is contributed by sarojmcy2e


Javascript




// Function to find maximum value
// of X such that |A[i] - X| ? K
function maximumNumber(arr, K) {
    const N = arr.length;
    // Stores the smallest and largest array elements
    const minimum = Math.min(...arr);
    const maximum = Math.max(...arr);
 
    // Store the range of possible values of X
    let low = minimum + K;
    let high = maximum - K;
 
    // Perform binary search to find
    // maximum value of X that satisfies
    // the given condition
    while (low <= high) {
        const mid = low + Math.floor((high - low) / 2);
        let possible = true;
        for (let i = 0; i < N; i++) {
            if (Math.abs(arr[i] - mid) > K) {
                possible = false;
                break;
            }
        }
        if (possible) {
            low = mid + 1;
        } else {
            high = mid - 1;
        }
    }
 
    // Return the maximum value of X
    return high;
}
 
// Driver Code
const arr = [1, 2, 5];
const K = 2;
const ans = maximumNumber(arr, K);
if (ans == -1) {
    console.log("No such X exists");
} else {
    console.log(ans);
}
 
// This code is contributed by Sundaram


Output

3

Time Complexity: O(N Log N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments