Sunday, January 12, 2025
Google search engine
HomeData Modelling & AIMaximum Sum pair of non adjacent elements in array

Maximum Sum pair of non adjacent elements in array

Given an array arr[] of distinct Integers, find the pair with maximum sum such that both elements of the pair are not adjacent in the array

Examples:

Input: arr[] = {7, 3, 4, 1, 8, 9}
Output: 9 7
Explanation: Pair with maximum sum is (8, 9). 
But since both elements are adjacent, it is not a valid pair. 
Therefore, the pair with maximum sum is (9, 7) with sum 16. 

Input: arr[] = {2, 1, 3}
Output: 2 3

Input: arr[] = {4, 3, 7, 9, 8, 1}
Output: 7 8
Explanation: Sum of both the pairs {7, 9} and {9, 8} are greater.
But they are adjacent pairs. Hence this is the valid answer.

 

Approach: The Idea is to compute the indices of the largest three elements in the array. After computing the indices, check the pair with max sum and also check whether they are adjacent or not. It is always possible to get at least one pair with two elements that are not adjacent as the three largest elements have been computed.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the max pair sum
// which are non-adjacent
pair<int, int> getMaxSumPair(int arr[], int N)
{
    // Indices for storing first, second
    // and third largest element
    if (N < 3) {
        return make_pair(-1, -1);
    }
    int first, second, third;
    if (arr[1] > arr[0]) {
        if (arr[1] > arr[2]) {
            first = 1;
            if (arr[2] > arr[0]) {
                second = 2;
                third = 0;
            }
            else {
                second = 0;
                third = 2;
            }
        }
        else {
            first = 2;
            second = 1;
            third = 0;
        }
    }
    else {
        if (arr[0] > arr[2]) {
            first = 0;
            if (arr[2] > arr[1]) {
                second = 2;
                third = 1;
            }
            else {
                second = 1;
                third = 2;
            }
        }
        else {
            first = 2;
            second = 0;
            third = 1;
        }
    }
 
    for (int i = 3; i < N; ++i) {
        if (arr[i] > arr[first]) {
            third = second;
            second = first;
            first = i;
        }
        else if (arr[i] > arr[second]) {
            third = second;
            second = i;
        }
        else if (arr[i] > arr[third]) {
            third = i;
        }
    }
 
    // Check whether the elements
    // are adjacent or not
    if (abs(first - second) == 1) {
        if (abs(first - third) == 1) {
            return make_pair(arr[second],
                             arr[third]);
        }
        else {
            return make_pair(arr[first],
                             arr[third]);
        }
    }
    else {
        return make_pair(arr[first],
                         arr[second]);
    }
}
 
// Driver Code
int main()
{
    int arr[] = { 7, 3, 4, 1, 8, 9 };
    int N = sizeof(arr) / sizeof(*arr);
    pair<int, int> p = getMaxSumPair(arr, N);
    cout << p.first << " " << p.second;
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
public class GFG {
 
  static class Pair {
    int first;
    int second;
 
    public Pair(int first, int second) {
      this.first = first;
      this.second = second;
    }
  }
 
  // Function to find the max pair sum
  // which are non-adjacent
  static Pair getMaxSumPair(int arr[], int N)
  {
 
    // Indices for storing first, second
    // and third largest element
    if (N < 3) {
      return new Pair(-1, -1);
    }
    int first, second, third;
    if (arr[1] > arr[0]) {
      if (arr[1] > arr[2]) {
        first = 1;
        if (arr[2] > arr[0]) {
          second = 2;
          third = 0;
        } else {
          second = 0;
          third = 2;
        }
      } else {
        first = 2;
        second = 1;
        third = 0;
      }
    } else {
      if (arr[0] > arr[2]) {
        first = 0;
        if (arr[2] > arr[1]) {
          second = 2;
          third = 1;
        } else {
          second = 1;
          third = 2;
        }
      } else {
        first = 2;
        second = 0;
        third = 1;
      }
    }
 
    for (int i = 3; i < N; ++i) {
      if (arr[i] > arr[first]) {
        third = second;
        second = first;
        first = i;
      } else if (arr[i] > arr[second]) {
        third = second;
        second = i;
      } else if (arr[i] > arr[third]) {
        third = i;
      }
    }
 
    // Check whether the elements
    // are adjacent or not
    if (Math.abs(first - second) == 1) {
      if (Math.abs(first - third) == 1) {
        return new Pair(arr[second], arr[third]);
      } else {
        return new Pair(arr[first], arr[third]);
      }
    } else {
      return new Pair(arr[first], arr[second]);
    }
  }
 
  // Driver Code
  public static void main(String args[]) {
    int arr[] = { 7, 3, 4, 1, 8, 9 };
    int N = arr.length;
    Pair p = getMaxSumPair(arr, N);
    System.out.println(p.first + " " + p.second);
  }
}
 
// This code is contributed by saurabh_jaiswal.


Python3




# Python code for the above approach
 
# Function to find the max pair sum
# which are non-adjacent
def getMaxSumPair(arr, N):
 
    # Indices for storing first, second
    # and third largest element
    if (N < 3):
        return [-1, -1]
 
    first = second = third = None
    if (arr[1] > arr[0]):
        if (arr[1] > arr[2]):
            first = 1
            if (arr[2] > arr[0]):
                second = 2
                third = 0
 
            else:
                second = 0
                third = 2
 
        else:
            first = 2
            second = 1
            third = 0
 
    else:
        if (arr[0] > arr[2]):
            first = 0
            if (arr[2] > arr[1]):
                second = 2
                third = 1
 
            else:
                second = 1
                third = 2
 
        else:
            first = 2
            second = 0
            third = 1
 
    for i in range(3, N):
        if (arr[i] > arr[first]):
            third = second
            second = first
            first = i
 
        elif (arr[i] > arr[second]):
            third = second
            second = i
 
        elif (arr[i] > arr[third]):
            third = i
 
    # Check whether the elements
    # are adjacent or not
    if (abs(first - second) == 1):
        if (abs(first - third) == 1):
            return [arr[second],
                    arr[third]]
 
        else:
            return [arr[first],
                    arr[third]]
 
    else:
        return [arr[first],
                arr[second]]
 
# Driver Code
arr = [7, 3, 4, 1, 8, 9]
N = len(arr)
p = getMaxSumPair(arr, N)
print(f"{p[0]} {p[1]}")
 
# This code is contributed by Saurabh Jaiswal


C#




// C# program for the above approach
using System;
 
public class GFG {
  class Pair {
    public int first;
    public int second;
 
    public Pair(int first, int second) {
      this.first = first;
      this.second = second;
    }
  }
 
  // Function to find the max pair sum
  // which are non-adjacent
  static Pair getMaxSumPair(int []arr, int N)
  {
 
    // Indices for storing first, second
    // and third largest element
    if (N < 3) {
      return new Pair(-1, -1);
    }
    int first, second, third;
    if (arr[1] > arr[0]) {
      if (arr[1] > arr[2]) {
        first = 1;
        if (arr[2] > arr[0]) {
          second = 2;
          third = 0;
        } else {
          second = 0;
          third = 2;
        }
      } else {
        first = 2;
        second = 1;
        third = 0;
      }
    } else {
      if (arr[0] > arr[2]) {
        first = 0;
        if (arr[2] > arr[1]) {
          second = 2;
          third = 1;
        } else {
          second = 1;
          third = 2;
        }
      } else {
        first = 2;
        second = 0;
        third = 1;
      }
    }
 
    for (int i = 3; i < N; ++i) {
      if (arr[i] > arr[first]) {
        third = second;
        second = first;
        first = i;
      } else if (arr[i] > arr[second]) {
        third = second;
        second = i;
      } else if (arr[i] > arr[third]) {
        third = i;
      }
    }
 
    // Check whether the elements
    // are adjacent or not
    if (Math.Abs(first - second) == 1) {
      if (Math.Abs(first - third) == 1) {
        return new Pair(arr[second], arr[third]);
      } else {
        return new Pair(arr[first], arr[third]);
      }
    } else {
      return new Pair(arr[first], arr[second]);
    }
  }
 
  // Driver Code
  public static void Main(String []args) {
    int []arr = { 7, 3, 4, 1, 8, 9 };
    int N = arr.Length;
    Pair p = getMaxSumPair(arr, N);
    Console.WriteLine(p.first + " " + p.second);
  }
}
 
// This code is contributed by shikhasingrajput


Javascript




<script>
      // JavaScript code for the above approach
 
      // Function to find the max pair sum
      // which are non-adjacent
      function getMaxSumPair(arr, N)
      {
       
          // Indices for storing first, second
          // and third largest element
          if (N < 3) {
              return [-1, -1];
          }
          let first, second, third;
          if (arr[1] > arr[0]) {
              if (arr[1] > arr[2]) {
                  first = 1;
                  if (arr[2] > arr[0]) {
                      second = 2;
                      third = 0;
                  }
                  else {
                      second = 0;
                      third = 2;
                  }
              }
              else {
                  first = 2;
                  second = 1;
                  third = 0;
              }
          }
          else {
              if (arr[0] > arr[2]) {
                  first = 0;
                  if (arr[2] > arr[1]) {
                      second = 2;
                      third = 1;
                  }
                  else {
                      second = 1;
                      third = 2;
                  }
              }
              else {
                  first = 2;
                  second = 0;
                  third = 1;
              }
          }
 
          for (let i = 3; i < N; ++i) {
              if (arr[i] > arr[first]) {
                  third = second;
                  second = first;
                  first = i;
              }
              else if (arr[i] > arr[second]) {
                  third = second;
                  second = i;
              }
              else if (arr[i] > arr[third]) {
                  third = i;
              }
          }
 
          // Check whether the elements
          // are adjacent or not
          if (Math.abs(first - second) == 1) {
              if (Math.abs(first - third) == 1) {
                  return [arr[second],
                  arr[third]];
              }
              else {
                  return [arr[first],
                  arr[third]];
              }
          }
          else {
              return [arr[first],
              arr[second]];
          }
      }
 
      // Driver Code
      let arr = [7, 3, 4, 1, 8, 9];
      let N = arr.length;
      let p = getMaxSumPair(arr, N);
      document.write(p[0] + " " + p[1]);
 
     // This code is contributed by Potta Lokesh
  </script>


Output

9 7

Time Complexity: O(N)
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments