Monday, January 13, 2025
Google search engine
HomeLanguagesDynamic ProgrammingMaximum sum of elements divisible by K from the given array

Maximum sum of elements divisible by K from the given array

Given an array of integers and a number K. The task is to find the maximum sum which is divisible by K from the given array.
Examples: 

Input: arr[] = {3, 6, 5, 1, 8}, k = 3 
Output: 18 
Explanation: 18 is formed by the elements 3, 6, 1, 8.
Input: arr = { 43, 1, 17, 26, 15 } , k = 16 
Output: 32 
Explanation: 32 is formed by the elements 17, 15. 

Naive Approach: Recursively check all the possible combinations to find the solution. The solution is of exponential time complexity and thus inefficient.
Efficient Approach: A dynamic programming approach by maintaining a 2-D array dp which stores the state of variable sum and i (where sum is the current sum and i is the ith index of integer array). By recurring over all elements, calculate the sum including the element at index i as well as excluding it and check if divisible by k. If so, store the maximum of them in dp[i][sum] and return.
Below code is the implementation of the above approach: 

C++




#include <bits/stdc++.h>
using namespace std;
 
int dp[1001][1001];
 
// Function to return the maximum sum
// divisible by k from elements of v
int find_max(int i, int sum, vector<int>& v,int k)
{
 
    if (i == v.size())
        return 0;
 
    if (dp[i][sum] != -1)
        return dp[i][sum];
 
    int ans = 0;
    // check if sum of elements excluding the
    // current one is divisible by k
    if ((sum + find_max(i + 1, sum, v, k)) % k == 0)
        ans = find_max(i + 1, sum, v, k);
     
    // check if sum of elements including the
    // current one is divisible by k
    if((sum + v[i] + find_max(i + 1,(sum + v[i]) % k,
                                   v, k)) % k == 0)
        // Store the maximum
        ans = max(ans, v[i] + find_max(i + 1,
                            (sum + v[i]) % k,v, k));
     
 
    return dp[i][sum] = ans;
}
 
// Driver code
int main()
{
    vector<int> arr = { 43, 1, 17, 26, 15 };
    int k = 16;
    memset(dp, -1, sizeof(dp));
    cout << find_max(0, 0, arr, k);
}


Java




class GFG{
  
static int [][]dp = new int[1001][1001];
  
// Function to return the maximum sum
// divisible by k from elements of v
static int find_max(int i, int sum, int []v, int k)
{
  
    if (i == v.length)
        return 0;
  
    if (dp[i][sum] != -1)
        return dp[i][sum];
  
    int ans = 0;
 
    // check if sum of elements excluding the
    // current one is divisible by k
    if ((sum + find_max(i + 1, sum, v, k)) % k == 0)
        ans = find_max(i + 1, sum, v, k);
      
    // check if sum of elements including the
    // current one is divisible by k
    if((sum + v[i] + find_max(i + 1,(sum + v[i]) % k,
                                   v, k)) % k == 0)
        // Store the maximum
        ans = Math.max(ans, v[i] + find_max(i + 1,
                            (sum + v[i]) % k, v, k));
      
    return dp[i][sum] = ans;
}
  
// Driver code
public static void main(String[] args)
{
    int []arr = { 43, 1, 17, 26, 15 };
    int k = 16;
    for (int i = 0; i < 1001; i++)
        for (int j = 0; j < 1001; j++)
            dp[i][j] = -1;
    System.out.print(find_max(0, 0, arr, k));
}
}
 
// This code is contributed by 29AjayKumar


Python 3




# Python3 implementation
dp = [[-1 for i in range(1001)] for j in range(1001)]
 
# Function to return the maximum sum
# divisible by k from elements of v
def find_max(i, sum, v, k):
    if (i == len(v)):
        return 0
 
    if (dp[i][sum] != -1):
        return dp[i][sum]
 
    ans = 0
     
    # check if sum of elements excluding the
    # current one is divisible by k
    if ((sum + find_max(i + 1, sum, v, k)) % k == 0):
        ans = find_max(i + 1, sum, v, k)
     
    # check if sum of elements including the
    # current one is divisible by k
    if((sum + v[i] + find_max(i + 1,(sum + v[i]) % k, v, k)) % k == 0):
         
        # Store the maximum
        ans = max(ans, v[i] + find_max(i + 1,(sum + v[i]) % k, v, k))
     
    dp[i][sum] = ans
 
    return dp[i][sum]
 
# Driver code
if __name__ == '__main__':
    arr = [43, 1, 17, 26, 15]
    k = 16
    print(find_max(0, 0, arr, k))
 
# This code is contributed by Surendra_Gangwar


C#




using System;
 
class GFG{
   
static int [,]dp = new int[1001,1001];
   
// Function to return the maximum sum
// divisible by k from elements of v
static int find_max(int i, int sum, int []v, int k)
{
   
    if (i == v.Length)
        return 0;
   
    if (dp[i,sum] != -1)
        return dp[i,sum];
   
    int ans = 0;
  
    // check if sum of elements excluding the
    // current one is divisible by k
    if ((sum + find_max(i + 1, sum, v, k)) % k == 0)
        ans = find_max(i + 1, sum, v, k);
       
    // check if sum of elements including the
    // current one is divisible by k
    if((sum + v[i] + find_max(i + 1,(sum + v[i]) % k,
                                   v, k)) % k == 0)
        // Store the maximum
        ans = Math.Max(ans, v[i] + find_max(i + 1,
                            (sum + v[i]) % k, v, k));
       
    return dp[i, sum] = ans;
}
   
// Driver code
public static void Main(String[] args)
{
    int []arr = { 43, 1, 17, 26, 15 };
    int k = 16;
    for (int i = 0; i < 1001; i++)
        for (int j = 0; j < 1001; j++)
            dp[i,j] = -1;
    Console.Write(find_max(0, 0, arr, k));
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// JavaScript program to implement
// the above approach
let dp = new Array(1000 + 1);
 
// Function to return the maximum sum
// divisible by k from elements of v
function find_max(i, sum, v, k)
{
     
    if (i == v.length)
        return 0;
 
    if (dp[i][sum] != -1)
        return dp[i][sum];
 
    let ans = 0;
    // check if sum of elements excluding the
    // current one is divisible by k
    if ((sum + find_max(i + 1, sum, v, k)) % k == 0)
        ans = find_max(i + 1, sum, v, k);
     
    // check if sum of elements including the
    // current one is divisible by k
    if((sum + v[i] + find_max(i + 1,(sum + v[i]) % k,
                                   v, k)) % k == 0)
        // Store the maximum
        ans = Math.max(ans, v[i] + find_max(i + 1,
                            (sum + v[i]) % k,v, k));
                                             
    return dp[i][sum] = ans;
}
  
// Driver Code
    let arr = [ 43, 1, 17, 26, 15 ];
    let k = 16;
 
    // Loop to create 2D array using 1D array
    for (var i = 0; i < dp.length; i++) {
        dp[i] = new Array(2);
    }
 
    for (var i = 0; i < dp.length; i++) {
        for (var j = 0; j < dp.length; j++) {
 
            dp[i][j] = -1;
        }
    }
 
    document.write(find_max(0, 0, arr, k));
 
    // This code is contributed by Dharanendra L V.
</script>


Output

32

Time Complexity: O(n*2^n)

Auxiliary Space: O(n*k)

Iterative implementation using top down dp:

We will be using the index and the modulus value of the sum as  our states of dp. dp[i][j] would store the maximum sum of the array till ith index whose modulus is j.

C++




#include <bits/stdc++.h>
using namespace std;
int main()
{
    int k=16;
    vector<int>arr={ 43, 1, 17, 26, 15 } ;
    int n=arr.size();
    vector<vector<int>> dp(n+2, vector<int>(k, 0));
    for (int i = 1; i <= n; i++) {
         
        for (int j = 0; j < k ; j++) {
            dp[i][j] = dp[i - 1][j];
        }
         
        dp[i][arr[i - 1] % k] = max(dp[i][arr[i - 1] % k], arr[i - 1]);
       
        for (int j = 0; j < k; j++) {
            int m = (j + arr[i - 1]) % k;
            if (dp[i - 1][j] != 0)
                dp[i][m] = max(dp[i][m],arr[i - 1] + dp[i - 1][j]);
        }
       
    }
    cout <<dp[n][0];
    return 0;
}


Java




import java.util.*;
 
class GFG {
 
    public static void main(String[] args)
    {
        int k = 16;
        int[] arr = { 43, 1, 17, 26, 15 };
        int n = arr.length;
        int[][] dp = new int[n + 2][k];
        for (int i = 1; i <= n; i++) {
 
            for (int j = 0; j < k; j++) {
                dp[i][j] = dp[i - 1][j];
            }
 
            dp[i][arr[i - 1] % k] = Math.max(
                dp[i][arr[i - 1] % k], arr[i - 1]);
 
            for (int j = 0; j < k; j++) {
                int m = (j + arr[i - 1]) % k;
                if (dp[i - 1][j] != 0)
                    dp[i][m] = Math.max(dp[i][m],
                                        arr[i - 1]
                                            + dp[i - 1][j]);
            }
        }
        System.out.print(dp[n][0]);
    }
}
 
// This code is contributed by ukasp.


Python3




k = 16
arr = [ 43, 1, 17, 26, 15 ]
n = len(arr)
dp = [[0 for i in range(k)] for j in range(n+2)]
for i in range(1, n+1):
    for j in range(k):
        dp[i][j] = dp[i - 1][j]
      
    dp[i][arr[i - 1] % k] = max(dp[i][arr[i - 1] % k], arr[i - 1])
    
    for j in range(k):
        m = (j + arr[i - 1]) % k
        if dp[i - 1][j] != 0:
            dp[i][m] = max(dp[i][m],arr[i - 1] + dp[i - 1][j])
             
print(dp[n][0])
 
# This code is contributed by suresh07.


C#




using System;
class GFG {
  static void Main() {
    int k = 16;
    int[] arr = { 43, 1, 17, 26, 15 };
    int n = arr.Length;
    int[,] dp = new int[n + 2, k];
    for (int i = 1; i <= n; i++) {
          
        for (int j = 0; j < k ; j++) {
            dp[i,j] = dp[i - 1,j];
        }
          
        dp[i,arr[i - 1] % k] = Math.Max(dp[i,arr[i - 1] % k], arr[i - 1]);
        
        for (int j = 0; j < k; j++) {
            int m = (j + arr[i - 1]) % k;
            if (dp[i - 1,j] != 0)
                dp[i,m] = Math.Max(dp[i,m],arr[i - 1] + dp[i - 1,j]);
        }
    }
    Console.Write(dp[n,0]);
  }
}
 
// This code is contributed by divyesh072019.


Javascript




<script>
    let k = 16;
    let arr = [ 43, 1, 17, 26, 15 ] ;
    let n = arr.length;
    let dp = new Array(n+2);
    for(let i = 0; i < n+2; i++)
    {
        dp[i] = new Array(k);
        for(let j = 0; j < k; j++)
        {
            dp[i][j] = 0;
        }
    }
    for (let i = 1; i <= n; i++) {
          
        for (let j = 0; j < k ; j++) {
            dp[i][j] = dp[i - 1][j];
        }
          
        dp[i][arr[i - 1] % k] = Math.max(dp[i][arr[i - 1] % k], arr[i - 1]);
        
        for (let j = 0; j < k; j++) {
            let m = (j + arr[i - 1]) % k;
            if (dp[i - 1][j] != 0)
                dp[i][m] = Math.max(dp[i][m],arr[i - 1] + dp[i - 1][j]);
        }
        
    }
    document.write(dp[n][0]);
     
    // This code is contributed by mukesh07.
</script>


Output

32

Time Complexity: O(N*K)

Auxiliary Space: O(N*K) 

Efficient approach: Space optimization

In previous approach the dp[i][j] is depend upon the current and previous row of 2D matrix. So to optimize space we use two vectors curr and prev that keep track of current and previous row of DP.

Implementation Steps:

  • Initialize two vectors curr and prev to keep track of only current and previous row of Dp with 0.
  • Now iterative over subproblems and get the current computation.
  • While iteration initialize curr vector.
  • Now compute the current value by the help of prev vector and store that value in curr.
  • After every iteration store values of curr vector in prev vector for further iteration.
  • At last return the answer stored in curr[0].

Implementation:

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to return the maximum sum
// divisible by k from elements of v
int findMax(vector<int> arr , int k , int n){
     
    // initialize two vectors curr and prev to keep
    // track of only current and previous row of Dp
    vector<int>prev(k+1, 0);
    vector<int>curr(k+1, 0);
     
    // iterative over subproblems and get the current computation
    for (int i = 1; i <= n; i++) {
            
        // initialize curr vector
        for (int j = 0; j < k ; j++) {
            curr[j] = prev[j];
        }
         
        // get the current value by the help of previous row
        curr[arr[i - 1] % k] = max(curr[arr[i - 1] % k], arr[i - 1]);
     
        for (int j = 0; j < k; j++) {
            int m = (j + arr[i - 1]) % k;
            if (prev[j] != 0)
                curr[m] = max(curr[m],arr[i - 1] + prev[j]);
        }
         
        // assigning curr to prev for further iteration
        prev = curr;
     
    }
    // print result
    return curr[0];
}
 
// Driver code
int main()
{
    int k=16;
    vector<int>arr={ 43, 1, 17, 26, 15 } ;
    int n=arr.size();
     
    cout << findMax(arr, k , n);
     
     
    return 0;
}


Java




import java.util.*;
 
public class Main {
 
  // Function to return the maximum sum
  // divisible by k from elements of v
  static int findMax(List<Integer> arr, int k, int n) {
 
    // initialize two arrays curr and prev to keep
    // track of only current and previous row of Dp
    int[] prev = new int[k+1];
    int[] curr = new int[k+1];
 
    // iterative over subproblems and get the current computation
    for (int i = 1; i <= n; i++) {
 
      // initialize curr array
      for (int j = 0; j < k ; j++) {
        curr[j] = prev[j];
      }
 
      // get the current value by the help of previous row
      curr[arr.get(i - 1) % k] = Math.max(curr[arr.get(i - 1) % k], arr.get(i - 1));
 
      for (int j = 0; j < k; j++) {
        int m = (j + arr.get(i - 1)) % k;
        if (prev[j] != 0)
          curr[m] = Math.max(curr[m], arr.get(i - 1) + prev[j]);
      }
 
      // assigning curr to prev for further iteration
      prev = curr.clone();
 
    }
    // print result
    return curr[0];
  }
 
  // Driver code
  public static void main(String[] args) {
    int k = 16;
    List<Integer> arr = new ArrayList<>(Arrays.asList(43, 1, 17, 26, 15));
    int n = arr.size();
 
    System.out.println(findMax(arr, k, n));
  }
}


Python3




def findMax(arr, k, n):
   
    # initialize two vectors curr and prev to keep
    # track of only current and previous row of Dp
    prev = [0] * (k + 1)
    curr = [0] * (k + 1)
 
    # iterative over subproblems and get the current computation
    for i in range(1, n + 1):
        # initialize curr vector
        for j in range(k):
            curr[j] = prev[j]
 
        # get the current value by the help of previous row
        curr[arr[i - 1] % k] = max(curr[arr[i - 1] % k], arr[i - 1])
 
        for j in range(k):
            m = (j + arr[i - 1]) % k
            if prev[j] != 0:
                curr[m] = max(curr[m], arr[i - 1] + prev[j])
 
        # assigning curr to prev for further iteration
        prev = curr.copy()
 
    # print result
    return curr[0]
 
 
# Driver code
k = 16
arr = [43, 1, 17, 26, 15]
n = len(arr)
print(findMax(arr, k, n))


C#




using System;
using System.Collections.Generic;
 
class GFG
{
 
  // Function to return the maximum sum
  // divisible by k from elements of v
  static int findMax(List<int> arr, int k, int n)
  {
 
    // initialize two vectors curr and prev to keep
    // track of only current and previous row of Dp
    List<int> prev = new List<int>(new int[k + 1]);
    List<int> curr = new List<int>(new int[k + 1]);
 
    // iterative over subproblems and get the current
    // computation
    for (int i = 1; i <= n; i++) {
      // initialize curr vector
      for (int j = 0; j < k; j++) {
        curr[j] = prev[j];
      }
 
      // get the current value by the help of previous
      // row
      curr[arr[i - 1] % k] = Math.Max(
        curr[arr[i - 1] % k], arr[i - 1]);
 
      for (int j = 0; j < k; j++) {
        int m = (j + arr[i - 1]) % k;
        if (prev[j] != 0)
          curr[m] = Math.Max(
          curr[m], arr[i - 1] + prev[j]);
      }
 
      // assigning curr to prev for further iteration
      prev = new List<int>(curr);
    }
    // print result
    return curr[0];
  }
 
  // Driver code
  static void Main()
  {
    int k = 16;
    List<int> arr = new List<int>{ 43, 1, 17, 26, 15 };
    int n = arr.Count;
 
    Console.WriteLine(findMax(arr, k, n));
  }
}


Javascript




// Function to return the maximum sum
// divisible by k from elements of v
function findMax(arr, k, n) {
 
  // initialize two arrays curr and prev to keep
  // track of only current and previous row of Dp
  let prev = new Array(k + 1).fill(0);
  let curr = new Array(k + 1).fill(0);
 
  // iterate over subproblems and get the current computation
  for (let i = 1; i <= n; i++) {
    // initialize curr array
    for (let j = 0; j < k; j++) {
      curr[j] = prev[j];
    }
 
    // get the current value by the help of previous row
    curr[arr[i - 1] % k] = Math.max(curr[arr[i - 1] % k], arr[i - 1]);
 
    for (let j = 0; j < k; j++) {
      let m = (j + arr[i - 1]) % k;
      if (prev[j] != 0) curr[m] = Math.max(curr[m], arr[i - 1] + prev[j]);
    }
 
    // assigning curr to prev for further iteration
    prev = [...curr];
  }
  // print result
  return curr[0];
}
 
// Driver code
let k = 16;
let arr = [43, 1, 17, 26, 15];
let n = arr.length;
 
console.log(findMax(arr, k, n));


Output

32

Time Complexity: O(N*K)
Auxiliary Space: O(K) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments