Friday, January 10, 2025
Google search engine
HomeData Modelling & AIMaximum sum of distinct numbers such that LCM of these numbers is...

Maximum sum of distinct numbers such that LCM of these numbers is N

Given a positive number N. The task is to find the maximum sum of distinct numbers such that the LCM of all these numbers is equal to N.

Examples: 

Input  : 2
Output : 3
The distinct numbers you can have are 
just 1 and 2 and their sum is equal to 3.

Input  : 5
Output : 6
Recommended Practice

As the LCM of all the numbers is N. So all the numbers must be the divisors of N and all the numbers are distinct so answer must be the sum of all the divisors of N. To find all the divisors efficiently refer to article https://www.geeksforgeeks.org/find-all-divisors-of-a-natural-number-set-2/

Here are the steps to solve this problem :

  1. Find all the divisors of ‘n’ by iterating from 1 to the square root of the n.
  2. If i!= n/i, add n/i to max sum as well as each divisor i to max_sum.
  3. Return max_sum as the final result.

Below is the implementation of the above approach.

C++




// C++ program to find the max sum of
// numbers whose lcm is n
#include<bits/stdc++.h>
using namespace std;
 
// Returns maximum sum of numbers with
// LCM as N
int maxSumLCM(int n)
{
    int max_sum = 0;  // Initialize result
 
    // Finding a divisor of n and adding
    // it to max_sum
    for (int i=1; i*i<=n; i++)
    {
        if (n%i == 0)
        {
            max_sum += i;
            if (n/i != i)
                max_sum += (n/i);
        }
    }
 
    return max_sum;
}
 
// Driver code
int main()
{
    int n = 2;
    cout << maxSumLCM(n) << endl;
    return 0;
}


Java




// Java program to find the max sum of
// numbers whose lcm is n
 
class MaxSum
{
    // Returns maximum sum of numbers with
    // LCM as N
    static int maxSumLCM(int n)
    {
        int max_sum = 0// Initialize result
      
        // Finding a divisor of n and adding
        // it to max_sum
        for (int i=1; i*i<=n; i++)
        {
            if (n%i == 0)
            {
                max_sum += i;
                if (n/i != i)
                    max_sum += (n/i);
            }
        }
         
        return max_sum;
    }
     
    // main function
    public static void main (String[] args)
    {
        int n = 2;
        System.out.println(maxSumLCM(n));
    }
}


Python3




# Python3 program to find the max sum of
# numbers whose lcm is n
 
# Returns maximum sum of numbers with
# LCM as N
def maxSumLCM(n) :
     
    # Initialize result
    max_sum = 0
 
    # Finding a divisor of n and adding
    # it to max_sum
    i = 1
    while(i * i<= n ):
        if (n % i == 0) :
            max_sum = max_sum + i
            if (n // i != i) :
                max_sum = max_sum + (n // i)
        i = i + 1
     
    return max_sum
 
# Driver code
n = 2
print(maxSumLCM(n))
 
# This code is contributed by Nikita Tiwari.


C#




// C# program to find the max sum
// of numbers whose lcm is n
using System;
 
class MaxSum
{
     
    // Returns maximum sum of 
    // numbers with LCM as N
    static int maxSumLCM(int n)
    {
         
         // Initialize result
         int max_sum = 0;
     
        // Finding a divisor of n and
        // adding it to max_sum
        for (int i = 1; i * i <= n; i++)
        {
            if (n % i == 0)
            {
                max_sum += i;
                if (n / i != i)
                    max_sum += (n / i);
            }
        }
         
        return max_sum;
    }
     
    // Driver Code
    public static void Main (String[] args)
    {
        int n = 2;
        Console.Write(maxSumLCM(n));
    }
}
 
// This code is contributed by parashar..


PHP




<?php
// PHP program to find
// the max sum of numbers
// whose lcm is n
 
// Returns maximum sum
// of numbers with
// LCM as N
function maxSumLCM($n)
{
    // Initialize result
    $max_sum = 0;
 
    // Finding a divisor
    // of n and adding
    // it to max_sum
    for ($i = 1;
         $i * $i <= $n; $i++)
    {
        if ($n % $i == 0)
        {
            $max_sum += $i;
            if ($n / $i != $i)
                $max_sum += ($n / $i);
        }
    }
 
    return $max_sum;
}
 
// Driver code
$n = 2;
echo MaxSumLCM($n);
     
// This code is contributed
// by ajit
?>


Javascript




<script>
 
// Javascript program to find the max sum of
// numbers whose lcm is n
 
// Returns maximum sum of numbers with
// LCM as N
function maxSumLCM(n)
{
    let max_sum = 0; // Initialize result
 
    // Finding a divisor of n and adding
    // it to max_sum
    for (let i=1; i*i<=n; i++)
    {
        if (n%i == 0)
        {
            max_sum += i;
            if (n/i != i)
                max_sum += (n/i);
        }
    }
 
    return max_sum;
}
 
// Driver code
  
    let n = 2;
    document.write(maxSumLCM(n) + "<br>");
     
// This code is contributed by Mayank Tyagi
 
</script>


Output

3

Time Complexity: O(sqrt(n))
Auxiliary Space: O(1)
If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments